

Isabel Giménez y Pablo Giménez Juny 15, 2017 Llotja del Cànem (Castellón)

Guide on renewable energies for small rural municipalities

Co-funded by the Erasmus+ Programme of the European Union

Presentation contents

- Justification
- 2. Objetives
- 3. Beneficiaries
- 4. Development of small municipalities through renewable energies
 - 4.1. Rural development
 - ▶ 4.2. Theoretical-practical approach to the renweable energies
- 5. Example of good practices: the case of Serra
 - 5.1. Context
 - 5.2. Technological solution
 - ▶ 5.3. Social, economic and environmental impact
 - 6. Projection

1. Justification

The Europe 2020 strategy prioritizes the flight agaisnt climate change (20% de RREE)

Primary energy consumption in Spain (IDAE, 2016)

Coal

Petrolium

Natural Gas

Nuclear energy

- Renewable energy
- The EU has a population of 510 milion people, of which
 28% live in rural areas (Eurostat, 2016)
- Small munucupalities are facing depopulation, closely related to the lack of opportunities

1. Justificación

Evolution of rural population compared to urban (%) (MAPAMA, 2010)

- In rural areas, resources are abundant, but few initiatives are promoted renewable energies locally
- This is compounded by the lack of information and the lack of dissemination of good practices (demonstrative effect)
- The ITforest and IN2RURAL projects have allowed us to analize the impact of the renewable energies in the municipalities, to know good practices and identify needs

2. Objetives

General objective

Promote initiatives that generate new opportunities for socio-economic development in small municipalities in the rural area through the renewable energies and that at the same time have a positive impact on the environment.

Specific objectives

- Support local governments in the desing of strategies and plans.
- Increase the technical skills of local development actors
- Sensitize civil society to favor an environment that encourages the implementation of these initiatives.

3. Beneficiaries

Active stakeholders in the development of small municipalities

6

4. Development of small municipalities through renewable energies

4.1. Rural development >> Sustainability

INSTITUTIONAL

Public participation, public-private cooperation, governance

CULTURAL

Assessment, recovery and strengthening of identities

> SOCIAL Social cohesion, equal opportunities

ECONOMIC

Diversification of productive systems, "green jobs", productive quality, access to resources

ENVIRONMENTAL

Maintenance of biodiversity, adaptation to carrying capacity, valorization of natural heritage

4.1. Rural development>> Participation

Participation ladder (adaptation of Arnstein, 1969)

4.2. Theoretical-practical approach to the renweable energies

APPROACH ADOPTED IN THE GUIDE					
Origin	 Dissemination and awareness on qualitative aspects Specific technical training 				
Training level	 Pre-projects Analysis of proposals Transversal technical initiation 				
Qualitative contents	Fundamentals and applicationsEquipment and facilities				
Quantitative contents	 Tables and graphics Simplified Empirical Formulas Practical assumptions with numerical calculations 				

Previous concepts

- Energy
- Power
- Hot
- Work
- Units
- Applications

Energy, Power, Performance and Consumption

Renewable sources

- RES are "those that come from non-fossil fuels, as a wind, solar, aerothermal, geothermal, hydrothermal and oceanic, hydropower, biomass, landfill gas, depuration plant gas and biogas" (2009/28/CE Directive)
- In our field (small installations):
 - Solid biomass
 - Biogas
 - Microhydraulics
 - Mini-wind energy
 - Solar thermal energy
 - Solar photovoltaic energy

Solid biomass

- Generalities
- Industrial and comfort facilities
- Practical numerical assumption

Biogas

- Basis and design of biodigesters
- Practical numerical assumption

Microhydraulics

- Generalities
- Power and energy to be supplied by a plant
- Turbines
- Practical numerical assumption

Mini-wind energy

- Power Generators
- Electric power supplied
- Location and height
- Average annual wind speed
- Power Density
- Average useful power and electrical energy to be supplied
- Practical numerical assumption

Thermal solar energy

- Solar radiation
- Solar radiation incident on a pickup
- Performance of a pickup
- Balance between useful and demanded power
- Practical numerical assumption

Photovoltaic Solar Energy

- Solar radiation and electrical energy
- Photovoltaic Cells and Panels
- Isolated installations
- Switching facilities
- Hybrid installations
- Practical numerical assumption

5. Example of good practices: the case of Serra

5.1. Context

BASIC DATA						
Provincie	Valencia					
Altitude (m)	330					
Surface (Km ²)	57,29					
Population density	54,84					
(habitants/Km ²)						
Population (2015)	3,142					
ACTIVE ENTERPRISES	5 2016					

(Except primary sector)					
Industry	9				
Building	39				
Services	171				
Total	219				

5.1. Context

5.2. Technological solution

Central heating by 35 KW multi-fuel boiler with cast aluminum radiators

Starting data

Superficies Construidas (m²c)

	Planta Baja
AULAS 0-1 AÑOS	71,31
AULAS 1-2 AÑOS	66,21
AULAS 2-3 AÑOS	90,57
ASEO PERSONAL	6,97
ASEOS AULAS	30,12
COCINAS	12,94
SALA POLIVALENTE	14,71
SALA USOS MÚLTIPLES	33,10
DISTRIBUIDOR	39,71
TOTAL	365,64

Thermal gradient: 24°C Insulation: Good Operation: Intermittent

Distribution

ESCUELA MUNICIPAL DE EDUCACIÓN INFANTIL

2

3

1

0

ESCALA GRÁFICA

4 5 metros

24

Boiler power verification

Thermal power density in W/m2 required in rural housing. Own elaboration based on the standard NBE-CT-79

INSULATION TYPE	IK	DT	W/m² según la orientación				
			S	0	Е	Ν	Media
With thermal panel and double glazing		20K	39	55	59	63	54
	1	24K	47	66	71	76	65
Air chamber and single glazing 1,5		20K	65	70	74	79	72
	1,5	24K	86	92	99	105	96

- Constructed area S = 365,64 m2
- Density of power according to table: 76 W/m2 for orientation N, high insulation and intermittent use
- Minimum power: 365.74 x 76 W/m2 = 27788 W = 27.78 KW
- Selected boiler: LASIAN Bioselect 35 Plus, 35 KW

Verification of thermal emitters

POTENCIA EN RADIADORES CON DT 50°C = 27,2 KW POTENCIA CALDERA = 35 KW PÉRDIDAS 10% = 3,5 KW POTENCIA DISPONIBLE = 30,7 KW (>27,2 KW)

- 1. Boiler
- 2. Fuel silo
- 3. Ash collection
- 4. Primary circuit accelerator
- 5. Glass of expansion
- 6. Inertia tank
- 7. Secondary circuit accelerator
- 8. Radiators

6. Projection

In the framework of the IN2RURAL Project

- Publication as an open educational resource
- Dissemination of the English version
- As of September 2017
 - Translation into local languages
 - Presentation and dissemination
 - Design of new instruments (eg checklist, indicators)
 - Link with training in small municipalities

Thank you so much for your attention ③

igimenez@uji.es pablo.gimenez@uji.es