COMPARATIVE STUDY BETWEEN THE USE OF DISTRICT HEATING AND INDIVIDUAL HEATING SYSTEMS, BASED ON BIOMASS, IN AN INLAND RURAL TOWN OF THE PROVINCE OF CASTELLÓN

Author: Iván Segura Rodríguez

INTRODUCTION

Local government of Vistabella del Maestrazgo

Case of success: Serra

Forestry Waste Management

BIOMASS HEATING SYSTEMS

BIOMASS HEATING SYSTEMS

Installations:

- Residential applications
- Industrial applications
- District heating

DESCRIPTION OF THE INSTALLATION

Plaza Iglesia

El Duende (1)

Colegio Público Sant

Joan de Penyagolosa

Ayuntamiento de Vistabella del Maestrazgo

Calle Era Troya

Pico Peñagolosa

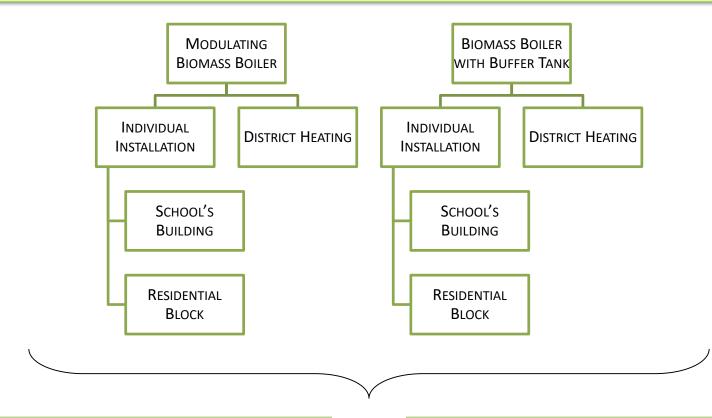
DESCRIPTION OF THE INSTALLATION

ENERGY DEMAND

- ➤ No energy consumption information
- Study of the building enclosures, windows and doors
- ➤ Natural ventilation

School's building

Thermal power loss	Power (W)
Building enclosure	28,534.19
Windows and doors	10,456.50
Ventilation	18,259.96
TOTAL	57,250.64


 $E = 34,914.99 \, kWh/year$

Residential block

Thermal power loss	Power (W)
Building enclosure	12,992.97
Windows and doors	9,040.77
Ventilation	3,886.80
TOTAL	25,920.54

 $E = 38,935.33 \, kWh/year$

BIOMASS BOILER

Typology and quality of the fuel High efficiency and low emissions High automatization level MODULAR SYSTEMS

DISTRIBUTOR'S AVAILABILITY

COST OF THE SYSTEM AND GRANTS

Modulating Biomass Boilers

➤ School's building:

BIOCALORA KP62 + 100 L HOPPER + FEED AUGER

> Residential block:

BIOCALORA KP22 + 100 L HOPPER + FEED AUGER

Producer/Model	Max Power [kW]	Min Power [kW]	Efficiency [%]	Fuel	Cleaning	Cost [€]
Biocalora/KP62	61	18.3	91.2	Pellet – Olive Stone	Automatic	11,053 €
Biocalora/KP22	28.5	8.55	90.9	Pellet – Olive Stone	Automatic	9,063 €

Modulating Biomass Boilers

➤ District heating:

2 x FROLING P4 48

Producer/Model	Max Power [kW]	Min Power [kW]	Efficiency [%]	Fuel	Cleaning	Cost [€]
2 x Froling/P4 48	96	14.4	85.4	Pellet	Automatic	30,433 €

BIOMASS BOILERS WITH BUFFER TANK

➤ School's building:

BIOCALORA SERIE 2000 B-ESSENTIAL 50 kW + 1000 L BUFFER TANK

➤ Residential block:

BIOCALORA SERIE 2000 B-HOME 25 kW + 700 L BUFFER TANK

Producer/Model	Max Power [kW]	Min Power [kW]	Efficiency [%]	Fuel	Cleaning	Cost [€]
Biocalora/S2000 Basic B-Essential 50 kW	50	25	90.1	Pellet	Semiautomatic	5,289 €
Biocalora/S2000 Basic B-Home 25 kW	25	12	90	Pellet	Semiautomatic	4,313 €

BIOMASS BOILERS WITH BUFFER TANK

➤ District heating:

BIOCALORA KP82 + 700 L HOPPER + FEED AUGER + 2200 L BUFFER TANK

Producer/Model	Max Power [kW]	Min Power [kW]	Efficiency [%]	Fuel	Cleaning	Cost [€]
Biocalora/KP 82	80	24	90.1	Pellet – Olive Stone	Automatic	14,347 €

COMPARISON

➤ Buffer tanks are always recommendable

➤ Less power = less cost

➤ Quicker start with buffer tanks

IT'S BETTER
TO USE
BUFFER
TANKS

Alternatives	Individual installation	Cer tralized installation
Modular boiler	20,116 €	30,433 €
Boiler with buffer tank	11,009 €	15,762 €

OTHER EQUIPMENT

➤ Storage systems:

Volume school's silo	6 m ³
Volume residential block's silo	5.1 m ³
Volume district heating silo	7.1 m ³

➤ Heat exchanger:

Power school's exchanger	60 kW	
Power residential block's	30 kW	
exchanger	30 KW	
Power district heating	80 kW	
exchanger	OU KVV	

OTHER EQUIPMENT

➤ Conduction systems:

- <u>Copper pipes</u>: diameter in function of pressure losses.
- Expansion vessels:

School = 150 liters Residential Block = 80 liters Both = 220 liters

- Radiators of cast iron: 5, 10 and 15 elements.
- Pumps:

Before/after heat exchanger. One for every installation.

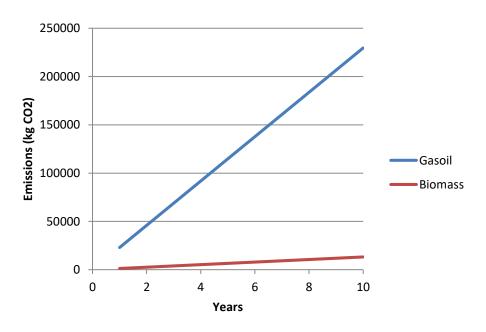
ENVIRONMENTAL IMPACT

FORESTRY WASTE MANAGEMENT

IMPROVEMENT OF FOREST ECOSYSTEM

CREATION OF A MYCOLOGICAL RESERVE

PRODUCTION OF BIOMASS FOR SELF-CONSUMPTION


FIRE PREVENTION

ENVIRONMENTAL IMPACT

- ➤ Noise impact:
- Anti-vibration feets
- Noise audit
- ➤ Air pollution and greenhouse gas emissions:
- Gasoil: 22,967.45 kgCO₂/year
- Pellet: 1,329.31 kgCO₂/year

SOCIAL AND RURAL DEVELOPMENT

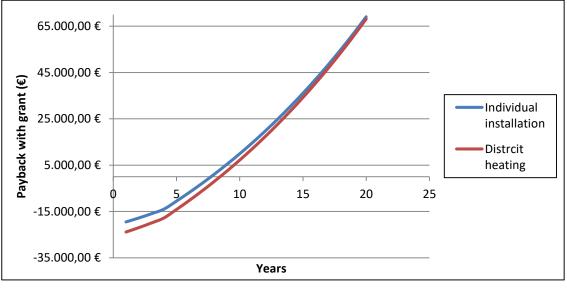
- ➤ Energy security:
- Energy independence
- Fight against energy poverty

- Economic development:
- Economical saves
- New jobs (direct and indirect)

- ➤ Reversing rural exodus:
- Attraction of new young families
- Better quality of life
- Creation of social spaces
- Ecotourism

ECONOMICAL ANALYSIS

Individual installations


TOTAL SCHOOL'S INSTALLATION	12.108,05€
TOTAL RESIDENTIAL BLOCK	14.429,68€
MATERIAL EXECUTION BUDGET	26.537,73 €
13% OF GENERAL EXPENSES	3.449,90 €
6% OF INDUSTRIAL BENEFITS	1.592,26 €
SUBTOTAL	31.579,90€
21% IVA	6.631,78€
TOTAL BUDGET	38.211,68 €

District heating

TOTAL DISTRICT HEATING	32.295,74 €
MATERIAL EXECUTION BUDGET	32.295,74 €
13% OF GENERAL EXPENSES	4.198,45 €
6% OF INDUSTRIAL BENEFITS	1.937,74 €
SUBTOTAL	38.431,92 €
21% IVA	8.070,70 €
TOTAL BUDGET	46.502,63 €

Estimated energy production	73850,32 kWh/year
Annual energy losses	0,50%
Pellet cost	0,035 €/kWh
Gasoil cost	0,0605 €/kWh
Pellet annual increase	0,50%
Gasoil annual increase	3,75 %
Discount rate	3,50%
O&M Cost	182€/boiler
Investment period	20 years
Grant	45 %

* After the 5th year, 50% of self-consumption

CONCLUSIONS

Biomass heating systems

Positive effects over social and rural development

Fight against climate change

Comparison between systems

District heating has less operation and maintenance

Small viability differences

Economic viability

It depends on **local government's** resources, although the project is viable

THANK YOU FOR YOUR ATTENTION

