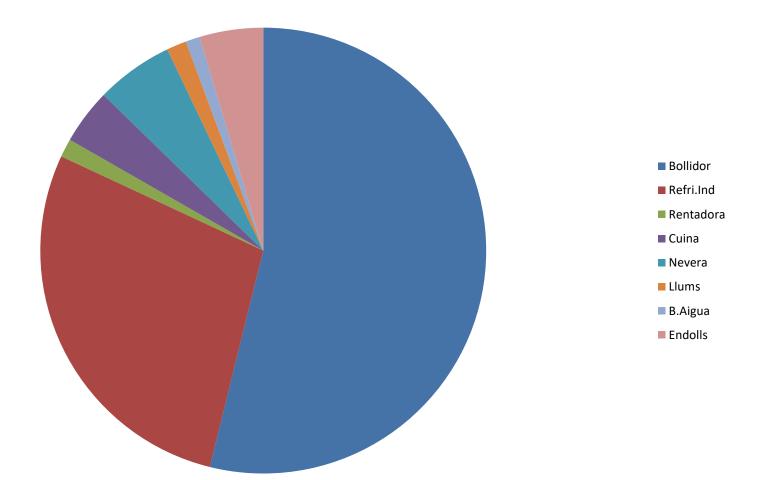
Photovoltaic - wind hybrid system for energy supply of an isolated consumer

Mario Muñoz Barbero Presentación proyecto IN2Rural 15/06/2017-Llotja del Cànem

General overview

- The farm is closed to the Călugăreni village.
- Located on a hill elevated 877.1 m over the sea.
- The farm produces dairy products throughout the year. And energy is produced thanks to a diesel generator.


Consumptions

• The farm has a series of consumptions along the year, that can be divided in:

Production area: Consisting of a Industrial fridge and a Boiler.

House area: Consisting on the typical consumptions from a house.

Consumptions

Elements to be installed

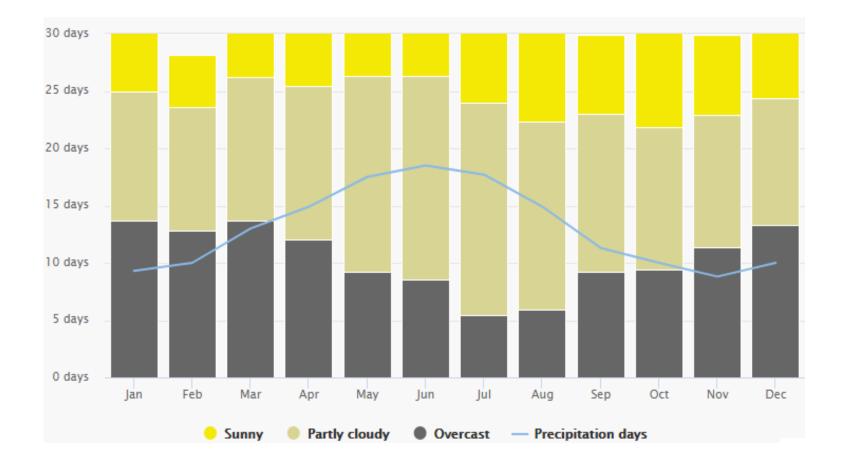
- 52 solar panels, rated power 340 W model Tamesol TM-M672340.
- One wind turbine, model Enair E-30 PRO rated power 3000 W

Elements to be installed

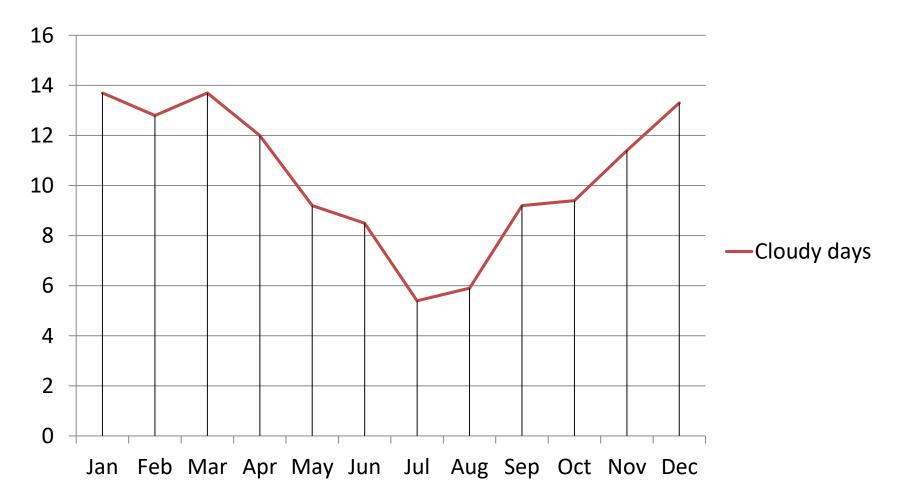
- Two charge regulator SmartSolar MPPT 250/85 by Victron Electron
- Two inverters Phoenix Inverter 48/5000 by Victron Electron
- Wind turbine has its own charge regulator, model RCE-ENAIR-120

Elements to be installed

- 40 battery blocks, model 12 CS 11P, from the company Rolls.
- Each battery block has a rated voltage of 12 V
- System working voltage at 48 V


Other elements

- Connection cables
- Fuses and circuit switch openers
- Grounding
- Connection boxes etc...


Criterion and reasons for a hybrid system

- High amount cloudy days.
- Very low irradiation on the month of December.
- Higher energy supply security and safety.

Criterion and reasons for a hybrid system

Criterion and reasons for a hybrid system

Suggested installation

• The solar panel system is to be installed on the roof of the house, at a 50 degree angle.

 The wind turbine, following the manual, is suggested to be installed on a 15 m pole and 10 m away from the house.

Suggested installation

Suggested installation

Optional elements

- On the winter period the house makes use of heated sanitary water
- A vacuum tube collector can be installed as an optional element to provide an alternative.

Budget

• Element cost:

	Price.exVAT(€)	PriceVAT(€)	
Panels	6.683,04 €	7.952,82 €	
Wind turbine	5.880,16€	6.997,39 €	
Inverters	5.086,00€	6.052,34 €	
Charge regulators	1.413,45 €	1.682,00€	
Battery system	37.830,08 €	45.017,80 €	
	Total price:	67.702,35 €	

Budget

• The total cost of the installation will be:

Elements price	BOS+ others	Funding	Total (€)
67702.35	14786	-1500	80988.35

Cashflow and payback

• The clashflow will be the money saved from the diesel used on the generator.

CashFlow = LitresDieselSaved * PriceDiesel - O&M

CashFlow = 9357.648
$$\frac{€}{Year}$$
 − 1619.76 $\frac{€}{year}$ = **7737.88** €/*year*

Cashflow and payback

• Therefore the payback period:

Payback period =
$$\frac{80988,35 €}{7737.88 \frac{€}{Year}}$$
 = **10.466 Years**

NPV and IRR

• Considering a discount rate of 5%

• We obtain a NPV of 7.088,42 € and IRR of 6%

• Therefore the inversion will provide a benefit to the farmer.

GHG emissions

The emissions emited from the production of the energy production elements are:

	Kw.Installed (kW)	CO ₂ g/Kwp	Total.CO ₂ g	
Panels	17,68	99	1750,32	
Turbine	3	10,2	30,6	
		Total:	1780,92	

GHG emissions

		Yearly energy demand (Wh)	Generator (Kw)	YearHours	Litres/h	Litres Diesel	DieselCO2	Total emission saved
the c	ise of diesel trator	7798039,643	5000	1559,60793	6	9357,64757	2,69	25172,07197
of die	5 use the esel erator	5848529,732	5000	1169,70595	6	7018,23568	2,69	18879,05398

Conclusions

- The solution presented is flexible and provides a fully solution to the problem that the client has.
- It provides him benefit and contributes to the GHG and global warming solution.