

LED, BETWEEN MODE AND LONG TERM EFFICIENCY

Prof.dr.ing. Cătălin-D. Gălăţanu

- The object of the study 6 localities belonging to the municipality of Resita:
 Câlnic, Ţerova, Doman, Secu, Furnaces and Moniom.
- This study aimed at upgrading the street public lighting system where the
 existing lighting is deficient and degraded to a great extent (the last major
 modernization of the lighting system took place in 2006 when generating the
 lighting with sodium vapor lamps).
- In general, the lighting requirements imposed by the SR 13433 standard were not ensured, and the energy consumption is a determinant performance criterion, having a negative effect on the community budget (most of the areas close to Reşiţa).

- The object of the study included the modernization of the street public lighting systems related to national, county and village roads in the aforementioned districts having a total length of about 29.45 km.
- The analyzed lighting systems comprise about 908 aerial poles (mostly nonisolated) equipped with about 802 luminaires.
- Lighting fixtures are mostly equipped with 70, 100 or 150W sodium lamps.

- Increasing the overall efficiency of the lighting system, reflected by increasing the level of illumination simultaneously with the decrease in energy consumption, is the main element of progress of the project.
- The modernization of the street public lighting consists in combining and balancing the theoretical solutions with the practical and economic ones (low energy consumption, minimal maintenance and installation costs, and the total costs of the lighting system administrator).
- It can be appreciated that achieving a comfortable light climate with minimal energy consumption with the most intense use of efficient and reliable lighting sources and luminaires and a minimum investment is a criterion for appreciating a modern lighting system efficient.

- Bringing street public lighting to the parameters set by SR 13433/99 as well
 as alignment with European norms required the change of incandescent lamps
 and lighting fixtures with reliable and efficient lamps, the arguments
 presented both on the indirect and economic benefits line reveal the necessity
 of increasing the efficiency of street public lighting In the neighboring areas of
 Resita.
- According to SR 13433/99 and the technical norms in force, the streets were light-technical in the ME5 category.
- In all areas around Resita, the existing lighting fixtures have been replaced with 65W led lamps.
- In the Doman district, where lighting was generally disposed of 2 in 2 pillars, the amplification of the lighting system was made by equipping all the pillars in the existing power grid, where consoles and lighting fixtures would be mounted.

Street centralizer on the projected situation of rehabilitated public lighting systems

Nr. Crt.	Strada	Nr. total stalpi existenti	Nr. total corpuri ilum. Existente	Putere instalata existenta [W]	Nr. total corpuri ilum. Propuse	Putere instalata unitara in corpul modernizat [W]	Putere instalata propusa [W]
0	1	2	3	4	5	6	7
a	Câlnic	177	178	12460	178	65	11570
b	Cuptoare	119	110	7700	110	65	7150
c1	Driglovăţ, din care	42	42	4200	42	65	2730
c2	Zonă străzi acces spre Driglovăţ	60	47	3620	60	65	3900
d	Doman	159	91	6370	166	65	10790
е	Moniom	65	60	9000	60	65	3900
f	Poiana Golului	66	63	4970	63	65	3105
g	Secu	132	123	8610	123	65	7995
h	Ţerova	88	88	6160	88	65	5720
	TOTAL	908	802	63090	890		56860

Capacities (in physical and value units)

- There will be modernization in terms of lighting technology and brought to the level of the standards in force a number of 6 neighboring localities in the municipality of Reşiţa having a total length of approximately 29.45 km, the installed existing electric power decreasing from 63.09kW (76kW inclusive Loss on ballasts) to about 56.86kW.
- These streets will be equipped with an additional number of 88 new lighting fixtures, the total number of new bodies being 890 pieces.

Other indicators specific to the field of activity where the investment is made:

- A) before the investment is made:
 - Specific annual electricity consumption (lei / km): 9559.0 RON / km / year
 - Annual specific electricity loss (kWh / km): 2760.0 kWh / km / year
 - Specific power losses (kW / km): 0.778 kW / km
- B) after the realization of the investment:
 - specific annual electricity consumption (lei / km): 4929.5 RON / km / year
 - Specific electricity loss (kWh / km): 488.1 kWh / km / year
 - Specific power losses (kW / km): 0.222 kW / km

65W LED Lighting Specifications:

T1-65W

Introducing a New Premium Experience

Op⊡cal control func⊡on is supported by op⊡onal Dimming func⊡ons are supported by op⊡onal

+ Three in One (1-10V DC or PWM Signal or Resistance)

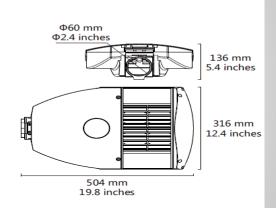
Specif ca\thetaons

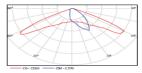
Electrical Specif ca ons:

Model No. ZGSM-LD65H

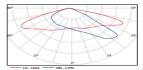
Nominal Wa@age 65W

Nominal Voltage *AC 100-240V /277V, 50/60Hz*


DC 24V


Maximum Current AC 0.67A -120V, 0.33A -240V, 0.29A -277V

DC 3.01A -24V


Op@mal Opera@ng

Temperature -40 °C to +50 °C

Order Ref. ZGSM-LD65H1S

2M Order Ref. ZGSM-LD65H2M

Exterior lighting - EC requirements

- The EU has set new energy efficiency requirements for lamps produced on the EU market as of 1 September 2009.
- EU regulation affects not only "household lamps" but also all inefficient lamps as well as inefficient ballasts and lighting fixtures:

2010	 Eliminarea lămpilor fluorescente liniare ("halofosfat") Etichetarea balasturilor pentru lămpile fluorescente Eficiența minimă necesară a balasturilor
2011	Informații obligatorii despre produs pentru corpurile de iluminat
2012	Eliminarea: Lămpilor fluorescente T12 (38 mm) Precizarea eficiențe balastului pentru lămpile cu descărcare in vapori de intensitate ridicată Cerințe minime pentru Factorul de conservare al fluxului luminos (LLMF) & Factorul de supravietuire al lampii (LSF)
2015	Eliminarea: Lămpilor cu mercur de înaltă presiune Lămpilor plug-in cu sodiu de înaltă presiune
2017	Cerințe mai mari pentru lămpile cu halogenuri metalice Eliminarea balasturilor magnetice, raman doar balasturile electronice

Outdoor lighting - types of lamps

Tehnologie	Imagine	Cota*	Aplicatii uzuale in prezent	Tendinte
Lampi cu vapori de sodiu de inalta presiune	(m = 5)	38%	Iluminat stradal, spatii parcare si tuneluri, partial spoturi	Drumurile principale si tunele, in prezent numar de aplicatii in crestere, din 2015 descreste
Lampi cu vapori de mercur de joasa presiune	•	35%	lluminat stradal, spatii parcare	Dispare eticheta CE in 2015
Lampi fluorescente in format alungit		9%	lluminat stradal, spatii parcare	Nepotrivit pentru iluminat stradal Eficienta scazuta Calitatea iluminatului
Lampi fluorescente compacte	<u></u>	9%	lluminat stradal, spatii parcare, zone pietonale	neconforma cu cerintele prezente, vor fi inlocuite cu solutii LED
Lampi cu descarcare in halogenuri metalice		6%	Spoturi, baze sportive, zone pietonale	Aplicatiile pentru iluminat stradal in crestere
LED	-	2%	Spoturi, marcaje & efecte luminoase	Aplicatiile pentru iluminat stradal in crestere
*raportat la iluminat stradal in Austri	a; 100% = 0,84 mil.punct	e iluminat		
Sursa: Philips, Ianuarie 2010				Supported by

Sursa: Philips, Ianuarie 2010

The main features of the different types of lamps:

**									
Tipul lămpii	Eficacitatea lămpii [lm / W]	Durata de viață probabilă [ore]	Indice de reda- re a culorilor [IRC]						
bec incandescent	8-15	1.000	100						
halogen cu tensiune joasă	12-25	2.500	100						
halogen cu filtru infraroșu	25-35	5.000	100						
lampă fluorescentă compactă	50-84	6.000 - 15.000	85						
lămpi fluorescente (T8, balast convențional)	47-83	8.000	>90						
lămpi fluorescente(T8, lămpi cu trei benzi, balast electronic)	până la 100	19.000							
Lămpi fluorescente (T5, balast electronic)	67-110	20.000-30.000	80-90						
Lămpi cu halogenuri metalice	84 - 104	10.000 - 15.000	>80						
Lămpi cu sodiu cu presiune înaltă	90 - 150	20.000 - 30.000	25						
Lămpi cu sodiu cu presiune scăzută	120 - 200	12.000 - 20.000							
Diodă emițătoare de lumină (LED)	30 – 90 (până la 130)	50.000 +	>80						
OLED	25	~10.000	>80						

Why LED?

The LED is an electronic device with a p-n junction that emits an optical radiation in the event of an electric excitation.

Advantages of the LED

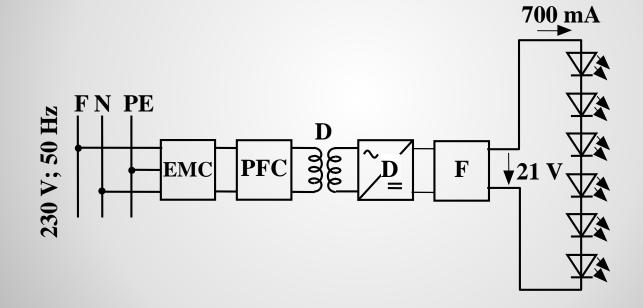
- Constant output color regardless of the level of illumination
- It does not contain mercury
- Not UV and infrared radiation
- Reduces the number of insects attracted
- Resistant and stable
- Wide range with different levels of quality available on the market

Design

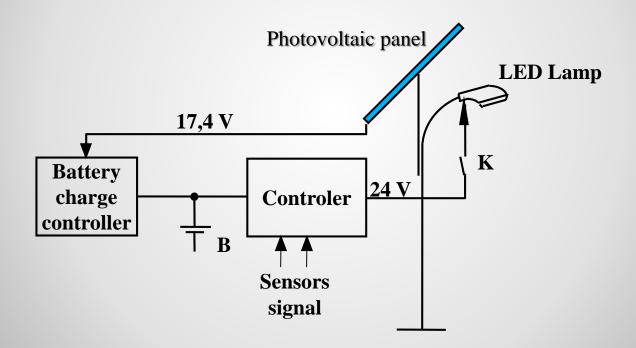
- Direct light
- Minimum side light losses (1800 emission angle)
- Light almost does not produce heat in the light cone
- Good color rendering
- Simple and flexible design for mounting and encapsulation

Efficiency & costs

- Very long life (50,000 and over)
- Currently, the light output of various lamps is:
- CFL-approx. 60 lm / W,
- "High Power LEDs" up to 100 lm / W, laboratory values up to 200 lm / W
- Currently, high investment costs



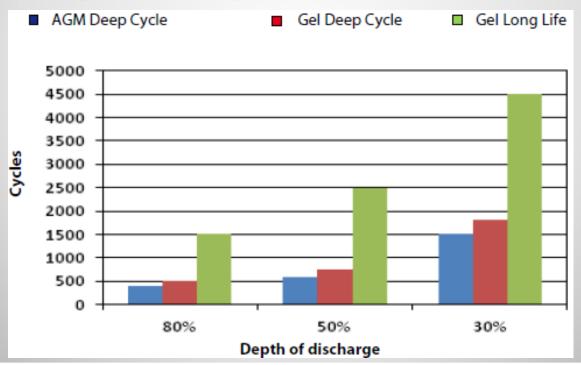
LED Lamp - Principle Electric Circuit



• The schematic diagram of an autonomous lighting system with photovoltaic panels

- Technical specifications of some batteries used to store solar energy
 - A) The life span of various types of gel batteries depending on the ambient temperature

Average Temperature	AGM Deep Cycle	Gel Deep Cycle	Gel Long Life		
	years	years	years		
20 °C / 68 °F	7 - 10	12	20		
30 °C / 86 °F	4	6	10		
40 °C / 104 °F	2	3	5		



Technical specifications of some batteries used to store solar energy

 B) Number of cycles supported by different types of gel batteries depending on the discharge level

- Technical and economical analysis of an energy-led led lighting system produced by solar panels
- It has been attempted to replace existing luminaires equipped with classical lamps through LEDs. By replacing existing light sources with LED light sources that will provide higher levels of illumination than those of the present, more appropriate to the purpose and destination of the roadway, improved visual comfort.
- By using solar panels, it was intended to reduce the cost of electricity to zero.
- An analysis of indirect benefits and costs may take into account two aspects: reducing maintenance costs and reducing electricity consumption in public street lighting.

- Technical and economical analysis of an energy-led led lighting system produced by solar panels
- The materialization of the proposed solution for the modernization of the lighting system involves the execution of the following categories of works:
- Replacement of existing street lighting with new, modular, LED, 40-60W, depending on the class of illumination adopted according to SR13433 / 99
- Giving up electricity from the public system
- Installation of 60-90-120W Solar Panel Systems with local power storage and its subsequent use at night when supplying the LED lighting body

Technical and economical analysis of an energy-led led lighting system produced by solar panels

The economic analysis was considered for the classic system:

- Periodic replacement of lamps, which at present according to field studies are economic, of relatively low power, whose lifetime is about one year;
- An annual revision of the entire lighting system.

For the upgraded system, according to the working parameters of the electrical energy storage elements, it was considered:

- Replacing batteries every four years
- A periodic replacement / maintenance of the load module every five years, and
- An annual revision of the entire lighting system.

 Technical and economical analysis of an energy-led led lighting system produced by solar panels

MODEF Object	EVALUATIONS MODERNIZATION OF THE PUBLIC ILLUMINATED SYSTEM WITH LED LIGHTS AND SOLAR PANELS Object Public street lighting											
А	Works C+M:											
Construction works: Total Lucrări de construcții: = 0 lei = 0.0€												
2. Electi	rical installation works: LED lamp mounting outdoor on existing pole	1 co	rp de ilur	ninat 6	50.0 W/buc							
	1 pcs x 585.6 lei / pcs		586	lei	= 131.7	€						
	Total Electrical installation works:		586	lei	= 131.7	€						
	Total A		586	lei	= 131.7	€						
В	ECHIPAMENTE:											
1.	Equipment with mounting											
	Street lighting with LED 60 W											
	1 pcs x 4325 lei / pcs		4325	lei	= 973.0	€						
	Total Equipment with mounting		4325	lei	= 973.0	€						
	Total B		4325	lei	= 973.0	€						
	TOTAL GENERAL		4911	lei	= 1104.7	€						

Technical and economic analysis of an energy-led led lighting system produced by solar panels

	ANNUAL	COSTS A	ND REV	ENUE RI	EVENUE -	EURO		
					Ye	ar		
	1	2	3	4	5	6	7	8
Annual energy price index update	1	1	1.02	1.02	1.02	1.02	1.02	1.02
Cumulative energy update index	1	1.00	1.02	1.04	1.06	1.08	1.10	1.13
Electricity price	0.130	0.130	0.133	0.135	0.138	0.141	0.144	0.146
Electricity cost classic lighting system with 30W economical bulbs, no losses on the network, euro / year	17.08	17.08	17.42	17.77	18.13	18.49	18.86	19.24
Cost of network power losses of the lighting system, euro / year	1.71	1.71	1.74	1.78	1.81	1.85	1.89	1.92
Generic cost electrical energy lighting system with 60W LED bulbs powered by solar panels, euro /an	34.16	34.16	34.85	35.54	36.26	36.98	37.72	38.47
Generic cost network power losses of the modernized lighting system, euro / year	3.42	3.42	3.48	3.55	3.63	3.70	3.77	3.85

Technical and economic analysis of an energy-led led lighting system produced by solar panels

INVESTITII TOTALE - mii Euro ANUL											
	1	2	3	4	5	6	7	8	9	10	
Object											
Public street lighting	1.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Other expenses	0.01										
Fixed assets	1.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Residual value										-	
										0.84	
Total investment costs	1.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	- 0.84	
Residual value is recorded a	s a negati	ve value	e becau	ıse it re	preser	nts an ir	nput st	ream.			

Technical and economic analysis of an energy-led led lighting system produced by solar panels

		ОР	ERATING CO	STS AND INC	OME - thous	ands of EUR	0			
					,	ANUL				
	1	2	3	4	5	6	7	8	9	10
Cost of electricity classic lighting system	0.019	0.019	0.019	0.020	0.020	0.020	0.021	0.021	0.022	0.022
Periodic maintenance of classic lighting system	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.007
Administrative costs	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total operating system cost of operation	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.007
Cost-saving energy-efficient lighting system	0.038	0.038	0.038	0.039	0.040	0.041	0.041	0.042	0.043	0.044
Periodic maintenance of modernized lighting system	0.003	0.003	0.003	0.359	0.035	0.003	0.003	0.388	0.003	0.038
Administrative costs	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total operating costs of the upgraded system	0.003	0.003	0.003	0.359	0.035	0.003	0.003	0.388	0.003	0.038
Budget subsidies	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Venituri de exploatare, realizat prin economii la buget	0.051	0.051	0.052	0.053	0.054	0.055	0.056	0.057	0.058	0.059
Venit net din exploatare	0.048	0.048	0.049	-0.306	0.019	0.052	0.053	-0.331	0.055	0.021

Technical and economic analysis of an energy-led led lighting system produced by solar panels

	FINANC	AL SUSTA	INABILITY	- thousan	ds Euro					
						EAR				
	1	2	3	4	5	6	7	8	9	10
Total financial resources	1.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sales	0.051	0.051	0.052	0.053	0.054	0.055	0.056	0.057	0.058	0.059
Total entries	1.170	0.051	0.052	0.053	0.054	0.055	0.056	0.057	0.058	0.059
Total operating costs	0.003	0.003	0.003	0.359	0.035	0.003	0.003	0.388	0.003	0.038
Total investment costs	1.119	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.839
Total exits	1.122	0.003	0.003	0.359	0.035	0.003	0.003	0.388	0.003	-0.801
Total cash flow	0.048	0.048	0.049	-0.306	0.019	0.052	0.053	-0.331	0.055	0.861
Cumulative total cash flow	0.048	0.096	0.145	-0.161	-0.142	-0.090	-0.037	-0.368	-0.312	0.548

As can be seen from the previous table, the total cumulative cash flow is not positive for all the years projected after the implementation of the investment

IN2RURAL Innovative Practices in Renewable Energies to Improve Rural Employability

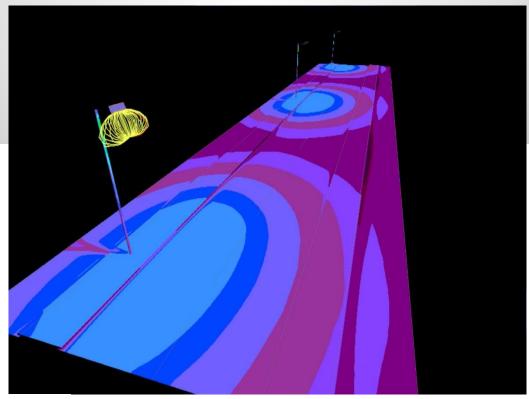
Analiza tehnică și economică a unui sistem de iluminat cu led-uri alimentat cu energie produsă de panouri solare

RATA INTERNA A RENTABILITATII FINANCIARE A INVESTITIEI - mii Euro										
					ANUL					
	1	2	3	4	5	6	7	8	9	10
Vanzari	0.051	0.051	0.052	0.053	0.054	0.055	0.056	0.057	0.058	0.059
Venituri totale	0.051	0.051	0.052	0.053	0.054	0.055	0.056	0.057	0.058	0.059
Costuri de exploatare totale	0.003	0.003	0.003	0.359	0.035	0.003	0.003	0.388	0.003	0.038
Costurile totale ale investitiei	1.119	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.839
Cheltuieli totale	1.122	0.003	0.003	0.359	0.035	0.003	0.003	0.388	0.003	-0.801
Disponibil de numerar net	-1.071	0.048	0.049	-0.306	0.019	0.052	0.053	-0.331	0.055	0.861
Rata de actualizare	5.0%									
Rata interna a rentabilitatii financiare a investitiei	-6.7%	<5%								
Valoarea actuala neta financiara a investitiei	-0.8	<0								
Raport cost - beneficiu	0.33	<1								

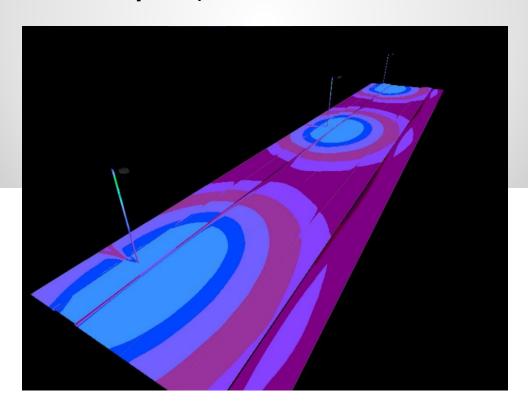
- IN2RURAL

 Innovative Practices in Renewable Energie
 to Improve Rural Employability
- Analiza tehnică și economică a unui sistem de iluminat cu led-uri alimentat cu energie produsă de panouri solare
- Valoarea actualizata neta raportata la investitie este negativa, ceea ce semnifică faptul ca proiectul nu poate fi realizat de beneficiar deoarece nu generează suficiente economii la bugetul beneficiarului pentru amortizarea investitiei.
- Fluxul cumulat de numerar, nu prezinta valori pozitive pe fiecare an, ceea ce dovedeste ca proiectul nu este durabil din punct de vedere financiar.
- Totuși, acest proiect fiind un proiect de infrastructură de utilitate publică, el va necesita surse de finanțare nerambursabile.
- Daca analiza economica s-ar face pentru corpuri de iluminat clasice cu vapori de sodiu de 70-125W (si nu cu lampi economice), economiile generate la bugetul beneficiarului prin utilizarea lampilor cu leduri ar fi permis amortizarea investitiei cu necesitatea mai redusa a unor surse de finanțare nerambursabile.

The classic solution



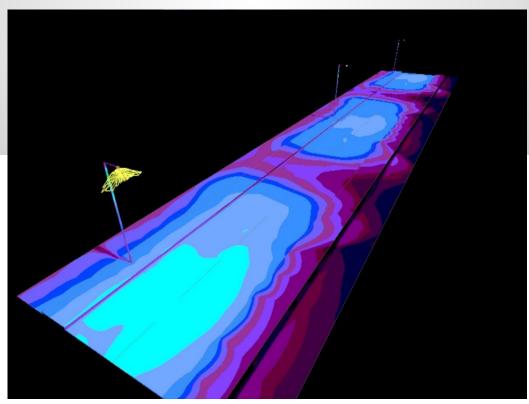
Classic system, HPS



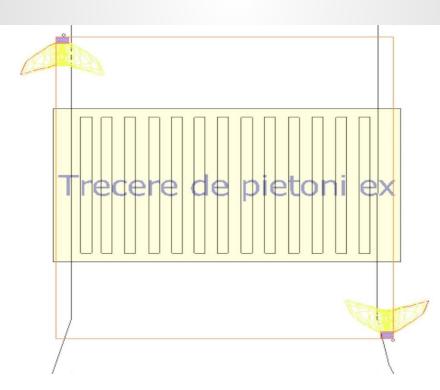
Classic system, fake colors



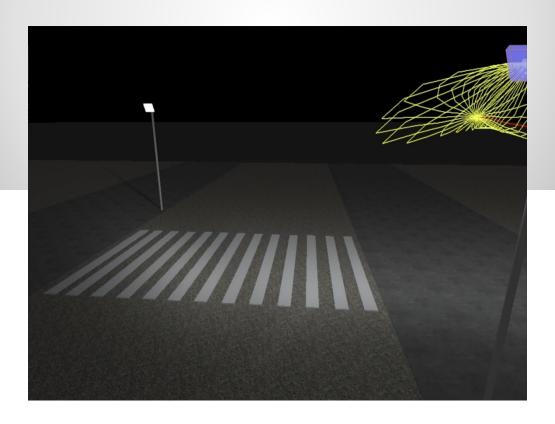
LED System "clasic"!



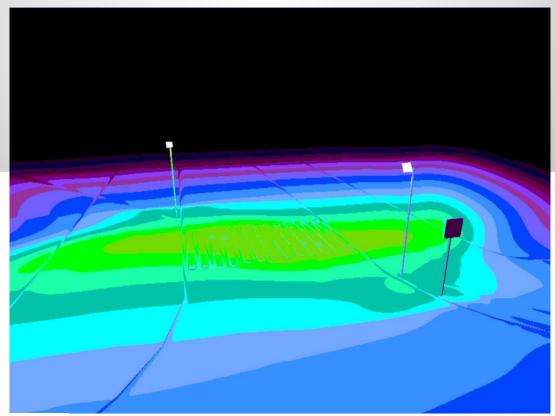
LED system, classic distribution!



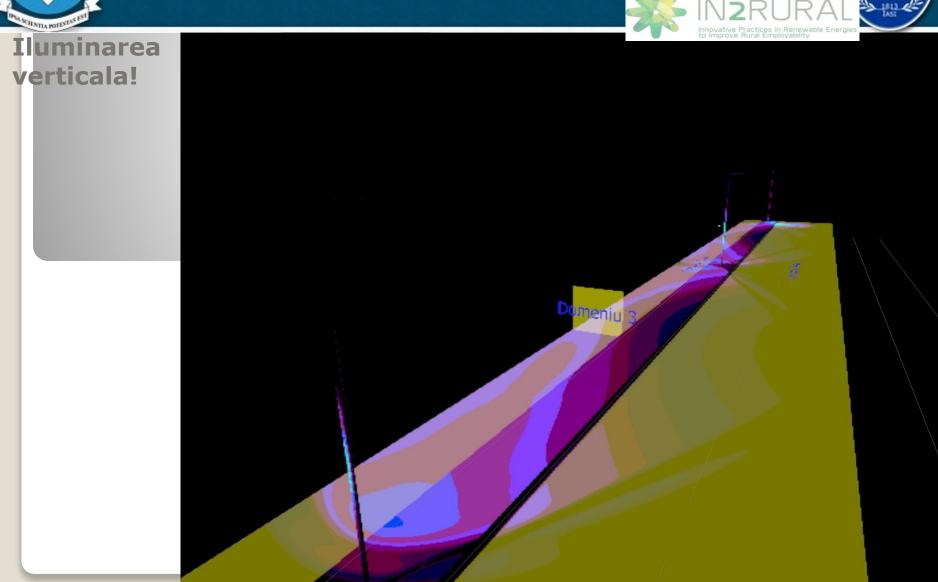
Crosswalk!



Pedestrian crossing: perspective



Asymmetric solution!



Sidewalk!

Sidewalk!

Conclusions:

Nr	Parametru	UM	HPS Clasic	LED clasic	LED vertical
1	Putere unitara	W	125	65	18
2	E med	lx	6,28	13,6	7,2
3	E max	lx	18,5	26,1	42,4
4	LENI	kW/km/100lx	63,7	13,67	7,14
5	E min/med	-	0,24	0,27	0,04