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List of Acronyms 

 

Anaerobic digestion (AD) 

Annualized rate of return (ARR) 

Associative forest management community (AFMC) 

Available biomass supply (ABS) 

Bubbling fluidized beds (BFB) 

Capital expenditure (CAPEX or CapEx) 

Circulating fluidized beds (CFB) 

Co-combustion (CO-COMB) 

Combined heat and power (CHP) 

Direct combustion (COMB) 

Earnings Before Interest and Tax (EBIT) 

Economic Value Added (EVA) 

Energy payback time (EPBT) 

European Center for Renewable Energy (EEE) 

Fatty acid methyl ester (FAME) 

Federal Ministry for Transport, Innovation and Technology, Austria (BMVIT) 

Fischer-Tropsch synthesis (FT synthesis)  

Flex fuel vehicles (FFVs) 

Fluidized bed combustion (FBC) 

Gasification (IBGCC) 

Greenhouse gas (GHG) 

Güssing Renewable Energy (GREG) 

Heat (HE) 

Hydrothermal upgrading (HTU) 

Internal rate of return (IRR) 

International Renewable Energy Agency (IRENA) 
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Kilograms of oil equivalent (kgOE) 

Kilowatt-electric (kWe) (One thousand watts of electric capacity) 

Levelized cost of electricity (LCOE) 

Levelized Energy Cost (LEC) 

Life Cycle Assessment (LCA) 

Liquid fuels (LF) 

Megawatts of thermal capacity (MWth) 

Net Operating Profit After Taxes (NOPAT) 

No commercial value (NCV) 

ökoEnergieland (öEL) 

Operation and maintenance (O&M) 

Organic Rankine cycle (ORC) 

Payback time (PBT) 

Petajoule (PJ) 

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DFs) 

Polycyclic Aromatic Hydrocarbon (PAC) 

Potential biomass supply (PBS) 

Qualified Zone Academy Bond (QZAB) 

Research and development (R&D) 

Return on Assets (ROA) 

Return On Capital Employed (ROCE) 

Return On Investment (ROI) 

Straight vegetable oil (SVO) 

Substitute natural gas (SNG) 

Supply Chain Management (SCM) 

Sustainability biomass supply (SBS) 

Total Organic Carbon (TOC) 

Toxic equivalency factor (TEF) 

United States Department of Energy (US DOE) 

Value added tax (VAT) 

Waste vegetable oil (WVO) 
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Summary: The chapter gives an introduction to the main concepts of biomass. The students 

get familiar with the categories of biomass materials and the principles of biomass utilization. 

The chapter also gives a detailed analysis about the utilization of biomass, the technical 

alternatives and installation types of biomass power plant. By acquiring the material of the 

subchapter, the students get familiar with the concepts concerned with biomass, the principles 

of biomass energy utilization, the status of biomass in Europe and the conditions for efficient 

exploitation. 

 

1.1.1 Concepts of biomass 

 

A number of definitions have been created regarding the term ‘biomass’. First, from an 

ecological approach, biomass is the amount of living matter in a given habitat, expressed 

either as the weight of organisms per unit area or as the volume of organisms per unit volume 

of habitat. However, in this material, the energetic approach is highlighted, according to 

which biomass is an organic matter, especially plant matter that can be converted to fuel and it 

is therefore regarded as a potential energy source. Concerning the above mentioned statement, 

the term of biomass refers to an energy source and also refers to plants or plant-based 

materials which are not used for food or feed, and are specifically called lignocellulosic 

biomass.  

  

Biomass is carbon based and is composed of a mixture of organic molecules containing 

hydrogen, usually including atoms of oxygen, often nitrogen and also small quantities of other 

atoms, including alkali, alkaline earth and heavy metals.  These metals are often found in 

functional molecules such as the porphyrins which include chlorophyll that contains 

magnesium. 

 

The carbon used to construct biomass is absorbed from the atmosphere as carbon dioxide 

(CO2) during the life of the plant, using energy from the sun. Plants may subsequently be 

eaten by animals and thus converted into animal biomass. However, the primary CO2 

absorption is performed by plants. Then, if plant material is not eaten it is generally either 

broken down by micro-organisms or burned: 

 If broken down it releases the carbon back to the atmosphere, mainly as either carbon 

dioxide (CO2) or methane (CH4), depending on the conditions and processes involved. 

 If burned the carbon is returned to the atmosphere as CO2. 

 

These processes have happened for as long as there have been plants on Earth and they are 

part of what is known as the carbon cycle. 
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The vital difference between biomass and fossil fuels is one of time scale. Biomass takes 

carbon out of the atmosphere while it is growing, and returns it as it is burned. If it is managed 

on a sustainable basis, biomass is harvested as part of a constantly replenished crop. This is 

either during woodland or arboricultural management or coppicing or as part of a continuous 

programme of replanting with the new growth taking up CO2 from the atmosphere at the same 

time as it is released by combustion of the previous harvest. This maintains a closed carbon 

cycle with no net increase in atmospheric CO2 levels. 

Features of biomass as energy source: 

 Its renewal is possible due to photosynthesis 

 The storage of energy is realized by the fact that during photosynthesis the solar 

energy accumulates as chemical energy in the created organic substances of the plants 

 Energy utilization can be achieved without further increasing the amount of 

atmospheric carbon dioxide 

 It helps to promote the conservation of mineral resources 

 The emissions of pollutants (CO2, CO, SO2, CXHX) are significantly lower compared 

to fossil fuels   

 Due to the overproduction of food in some regions it is possible to utilize rationally 

the crop lands 

 It has a positive impact on rural development and creating jobs 

Categories of biomass materials 

Within these definitions, biomass for energy can include a wide range of materials. The 

realities of the economics mean that high value material for which there is an alternative 

market, such as good quality, large timber, are very unlikely to become available for energy 

applications.  However, there are huge resources of residues, co-products and waste that exist 

which could potentially become available, in quantity, at relatively low cost, or even negative 

cost (where there is currently a requirement to pay for disposal). 

There are five basic categories of material: 

 Virgin wood, from forestry, arboricultural activities or from wood processing 

 Energy crops: high yield crops grown specifically for energy applications 

 Agricultural residues: residues from agriculture harvesting or processing 

 Food waste, from food and drink manufacture, preparation and processing, and post-

consumer waste 

 Industrial waste and co-products from manufacturing and industrial processes. 

On the basis of the source of biomass, biomass can be classified into three categories: 

 Primary biomass: biomass produced by agriculture and forestry and includes energy 

crops and agricultural crops such as short rotation trees, grasses and aquatic plants. 

 Secondary biomass: biomass such as straw, stover and crop residues that is generated 

as a result of harvesting and processing of primary biomass such as lumber, pulpwood, 

and grains. It also includes processing residues and by-product streams from food, 

feed, fibre and materials production. 

 Tertiary biomass: post-consumer residue streams from urban activities such as fats, 

greases, oils, construction and demolition debris/wood, as well as animal manure and 

other by-products from concentrated animal feed operations. 
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Primary and secondary biomass energy sources 

1. Raising crops for energy use 

The number of plants which can be taken into account for energy production is almost 

limitless, as lignin cellulose all of them are suitable for environmentally friendly energy 

production by means of tying solar energy, in addition to the presence of closed CO2 

cycle. 

The most important criteria for the selection of energy sources are as follows: 

 allow the implementation of various production techniques, 

 technologies and technology solutions of a well-working industry shall be utilized, 

 there shall be a solution for the application of intensive and extensive production 

and utilization technologies, 

 they shall allow to choose between a wide variety of crop land conditions.  

 

a. Herbaceous plants  

They main characteristics are: a large number of crops per hectare, relatively small plant 

height, applicability of the developed technologies and technical solutions in agriculture. 

A great benefit of growing such crops and using such technologies is the following: there 

is no need for fundamental technical and technological changes in agriculture. However, 

due to the annual harvesting of biomass and the life cycle of plants, there is a large 

number of harvests which cannot be deferred. 

The most important sources of biomass energy in the future could be: 

 Rapeseed (Brassica napus) 

 Hemp (Cannabis sativa L.) 

 Triticale (× Triticosecale) 

 Bromegrass (Bromus inemis Leyss)  

 Reed Canarygrass (Phalaris arundinacea L.) 

 Silvergrass (Mischantus) 

 

b. Woody energy crops 

Woody plants, like herbaceous plants, are also lignocellulosic but they are perennials and 

the above-ground parts grow further each year. The solar energy tying and CO2 cycle is 

the as in the case of plant featured, but the fundamental difference is that woody energy 

crops do not need to harvest every year. Even if a planned harvest fall short for some 

reason, the plants continue to grow, so technological problems do not arise. 

The most important ones are: 

 Robinia (e.g. black locust) 

 Willow (Salix sp.) 

 Poplar, aspen, cottonwood (Populus) 

 

2. Energy forestry 

The energy forest is a special type of tree plantation, from which a large amount of well-

burning biofuels can be obtained in the shortest time with the lowest costs. The energy forests 

should be planted in the agriculturally not utilized or abandoned areas. These plantations can 



                                                                                  

                                                                               

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

4 

Renewable energy for local development course 

be differed by the length of the cutting cycle:  mini- (1-4 years), midi- (5-10 years), short- 

(11-15 years), medium- (16-19 years), and long-term (20-25 years).  

 

The types of trees which are suitable to be planted in energy forests due to their rapid growth, 

high dry matter yields and thanks to the ease of producibility and processability are: 

Robinieae, linden, maple, willow, alder and poplar.     

 

This section shew how wide the range of plants for producing biomass-based energy is, but 

there are many factors which inhibit their production. The most important ones are the non-

smooth acceptance by the producers and the society. It is difficult to insert the processing 

method into the existing agrotechnology, small energy yield of biomass per hectare, and high 

investment demand for producing energy.  

 

Utilization possibilities: 

Biomass as an energy resource can be utilized as follows: 

1. Directly:  

 Firing without preparation or after preparation 

2. Indirectly 

 After chemical transformation (liquefaction, gasification) as liquid fuel or 

combustible gas 

 After fermenting into alcohol as fuel 

 By esterification of vegetable oils as biodiesel 

 After anaerobic fermentation as biogas 

Pros and cons of biomass utilization 

The primary advantages of biomass-based energy sources can be experienced in 

environmental protection, rural development, energy policy and waste management: 

 Reduced economic dependence on imports 

 Provide continuous energy production 

 Decrease surplus agricultural products (food) 

 Improve incomes generating ability of the rural population 

 Improve state of the environment 

 They are available almost everywhere, not locally restricted  

 They can use agricultural waste 

 Large investments are not required in a certain location 

 

Inhibiting factors of energetic utilization of biomass 

 Thick-featured and well-developed gas pipeline network 

 Expensive equipment, long payback period 

 Space requirement for material  storage 

 Expensive delivery 

 Labour-intensive technology 

 Limited investment sources and State’s support 

 Lack of knowledge 
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Calculation of available biomass 

The studies and estimates on biomass resources (especially the studies that consider all types 

of biomass for relatively large geographical areas) generally have to face problems connected 

to the reliability of data relating to existing residues, wastes, potential biomass by energy 

crops and also connected to the definition of available resources, when limits (including 

technical and economical ones) are uncertain. To evaluate available biomass it is necessary to 

include into the model the different restrictions (environmental, social and economic) that can 

limit its availability. Once those available biomasses have been found, their uses could be 

only partially sustainable. The evaluation of ‘Sustainability Biomass Supply’ (SBS) is 

possible just evaluating and monitoring all key aspects of the bioenergy chain. A calculation 

of ‘Available Biomass Supply’ (ABS) from ‘Potential Biomass Supply’ (PBS) is showed 

following.  

In general, the amount of materials can be estimated using the following formula that returns 

the available tonnes of Biomass per year, taking into consideration the respective biomass 

indexes above-mentioned. The aim is to estimate the amount of biomass (both like primary 

product and residues) that can be collected over a certain region. 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑖 = 𝐴𝑟𝑒𝑎 𝑜𝑟 𝑐𝑎𝑡𝑡𝑙𝑒 𝑑𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑𝑖 × 𝑌𝑖𝑒𝑙𝑑𝑖 × 𝑅𝑡𝑃𝑖 × (1 − 𝑙𝑜𝑠𝑠𝑖)
× (1 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑢𝑠𝑒𝑖) × (1 − 𝑒𝑐𝑜𝑙𝑖) × 𝑒𝑐𝑜𝑛𝑖 

where: 

 Area or cattle dedicatedi (ha/n°cattle): is the area or number of cattle involved i in the 

studied region; 

 Yieldi (t/ha): is the yield of crop or manure by cattle i in the studied region; 

 RtPi: is the residue-to-product ratio for crop/or manure by cattle i; 

 Lossi (%): losses of residues due to technical issues i; 

 Current usei (%): current use of residues i; 

 Ecoli (%): fraction of residues that should not be removed due to ecological issues i; 

 Econi (%): fraction of residues that is economically convenient to use for energy 

conversion i. 

 

1.1.2 Principles of biomass energy utilization 

 

Different international organizations like the European Union, the World Energy Council, and 

others… suggest a number of principles of biomass energy utilization and also recommend 

different criteria for the sustainable use of biomass energy.   

 

In this sense, the EU has defined a set of sustainability criteria to ensure that the use of 

biofuels (used in transport) and bioliquids (used for electricity and heating) is done in a way 

that guarantees real carbon savings and protects biodiversity. Only biofuels and bioliquids that 

comply with the criteria can receive government support or count towards national renewable 

energy targets.
1
 

 

The main criteria in this respect: 

 To be considered sustainable, biofuels must achieve greenhouse gas savings of at least 

35% in comparison to fossil fuels. This savings requirement rises to 50% in 2017. In 

2018, it rises again to 60% but only for new production plants. All life cycle emissions 

                                                           
1
 For the related legislation see https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/sustainability-

criteria  

https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/sustainability-criteria
https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/sustainability-criteria
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are taken into account when calculating greenhouse gas savings. This includes 

emissions from cultivation, processing, and transport. 

 Biofuels cannot be grown in areas converted from land used previously as high carbon 

stock such as wetlands or forests. 

 Biofuels cannot be produced from raw materials obtained from land with high 

biodiversity such as primary forests or highly biodiverse grasslands. 

 

According to the World Energy Council, the sustainability principles are the overarching 

goals that the individual producers should aim at. In terms of biomass energy, sustainability is 

regarded as a threefold paradigm, entailing social, economic and environmental dimensions. 

A sustainability standard should account for all three fields, while adding specifications on the 

greenhouse gas emissions savings, life cycle assessment, chain-of-custody, verification and 

auditing.  Principles encompass the general aspirations that are expressed using broad, open-

ended wording. The principles form the actual sustainability framework, by setting the tone of 

the degree of ambitions. The criteria specifies the concrete aspects of each principle and they 

should detail all necessary steps for compliance with the principle. 

 

1. Social sustainability 

Social sustainability reflects how the production of biomass for energy, including 

transport applications, impacts local development. In particular, social sustainability aims 

to ensure that the human, land rights and land use rights are respected. It also tackles 

issues like labour standards, safety standards. Any sustainability standard and especially 

one that touches upon agriculture and local development, dedicates a main important part 

to social aspects. A standard that aims to be universally applicable is bound to include 

provisions on the social side. 

 

Social principles and criteria: 

 Labour rights of the local people should be respected 

 Land and land use rights of the local population should be respected 

o The land use rights are demonstrable and there is no conflict of claims with 

the local population 

o The use of agricultural land for the cultivation of biomass for energy 

applications will not distort the land and customary rights of the local 

population 

 The relation with the local community and the responsibility-sharing between 

parties should ensure local development 

o The local community should be consulted in matters related to the land 

management 

o The negative impacts of land management on the local community should 

be minimized and the positive impacts maximized 

2. Economic sustainability 

The economic sustainability is a prerequisite for sustainable production of biomass for 

energy applications including transportation purposes. Local development issues are 

not only relevant from a social sustainability perspective, but also from the economic 

sustainability angle. In addition, economic viability of individual operators has to be 

ensured. 

 

Economic principles and criteria: 
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 New projects (e.g. plant building, crop cultivation, etc.…) should ensure 

economic profitability and contribute to the local development of the region 

 An equitable profit sharing should be carried out between the owners, the 

employees and the local community 

o The local economic conditions should improve in time 

3. Environmental sustainability 

Sustainability standardization of biomass (e.g. for biofuels) cannot overlook the 

environmental aspects. Environmental sustainability of a biomass-related project is 

essential for the conception of sustainability standards and finally plays a key role in 

the phase of compliance with principles and criteria laid down in such standards. 

 

Environmental sustainability addresses issues related to, but not restricted, 

biodiversity, land preservation, water and soil preservation. In a first step it will set 

clear definitions of concepts, thresholds, etc. since the whole aim of replacing 

conventional energy with renewable sources is gravitating around the greenhouse gas 

(GHG) emission reductions that the latter bring. Accordingly, a standard for 

sustainably produced biomass for energy and/or transport must refer to the GHG 

emission reductions. 

 

Environmental principles and criteria: 

 The conservation of the biodiversity, ecosystems and the protected areas must 

be ensured by the production of biomass for energy or other applications 

o An ex-ante assessment of the biodiversity, ecosystem and protected 

areas should be conducted in case there is no other assessment for 

reference 

o The endangered species and areas should be identified and their 

protection should be evaluated 

 The use of best practices in the production of biomass for energy and other 

applications should be guaranteed so as to ensure the soil preservation and the 

minimization of negative impacts 

o The employed practices ensure soil preservation and fertility, while 

accounting for obtaining balanced yields 

o Wastes and by-products use/disposal is conducted to preserve soil 

health and fertility 

 The use of best practices in the production of biomass for energy and other 

applications should be guaranteed so as to ensure the water preservation and 

the minimization of negative impacts like contamination or induced scarcity 

o The employed practices ensure conformity with water management 

rules, usage rights and water availability factor 

o The employed practices ensure water availability both on the surface 

and in the ground. 

 The production of biomass for energy applications should ensure GHG 

emissions savings when compared with the conventional energy sources 

o The GHG emissions savings from the production of biofuels 

accounting for all the life cycle emissions should ensure the compliance 

with the legislation in force on the specific territory 

o The GHG emissions savings from the production of biomass for energy 

and other applications should improve in time 
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o The GHG emissions accounting for the production of biomass for 

energy and other applications should be done in a life cycle approach, 

having the system boundaries in accordance with the legislation in 

force on the territory, if such legislation exists 

o When selecting biomass sources for energy use, people shall strive for a 

significant contribution to climate protection, considering all essential 

process steps in the value chain. 

1.1.3 Biomass in Europe 

Large amounts of solid biomass are currently produced, traded, and used for energy purposes 

in the European Union, but this trade is largely uncharted. Also, increasing volumes of 

unrefined and refined biomass are being imported from outside the EU to several European 

countries. While the traded volumes are most likely in most cases relatively small compared 

to local production and consumption of solid biomass, biomass trade has shown a strong 

growth in recent years, and there are good reasons to believe that this will continue in the 

years to come. Especially countries with little domestic biomass resources and high targets for 

renewable electricity, renewable heat and (eventually second generation) liquid biofuels may 

increasingly depend on imported solid biomass. On the other hand, countries with ample solid 

biomass resources are increasingly discovering the international markets for solid biomass, 

and especially wood pellet plants are frequently built with the main (or sole) purpose of 

export. 

Figure 1 presents the reported availability of biomass resources in EUBIONET III
2
 partner 

and subcontractor countries. The total annual figure for reported biomass resources in 24 EU 

countries and Norway is around 6,577 PJ (157 Mtoe). According to EUBIONET III study, 

50% of the annual biomass potential is currently used in the EU-24 and Norway. 

The greatest potential (46%) to increase the use of biomass in energy production seems to lie 

in forest residues and herbaceous & fruit biomass. The utilisation of forest residues is often 

connected with round wood harvesting especially in Nordic countries, so the use of round 

wood by the forest industry impacts also the exploitation of the forest residue potential. 

Industrial by-products and residues (bark, sawdust, cutter chips, grinding dust, etc.) are quite 

well exploited in energy production and pellet or briquette production. The availability and 

cost of forest biomass varies considerably between countries and within countries. The most 

common biomass fuel is forest wood (wood chips, firewood and hog fuel). In general, the 

availability of forest resources, the demand for forest fuels, and machine and labour costs are 

the defining factors behind prices. Usually, both the optimal harvesting technology and the 

availability of forest fuel must be studied on a local level for reliable results. 

                                                           
2
 The EUBIONET III project aimed to increase the use of biomass-based fuel in the EU by finding ways to 

overcome market barriers. The results of the EUBIONET III project contribute to a sustainable, transparent 

international biomass fuel trade, secure the most cost efficient and value-adding use of biomass for energy and 

industry, boost the investments on best practice technologies and new services on biomass heat sector and 

enhance sustainable and fair international trade of biomass fuels. EUBIONET III was supported by the European 

Commission under the Intelligent Energy - Europe Programme. 
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Figure 1. Biomass resources by type in the EU-24 and Norway. (Source: EUBIONET III, 

2011) 

 

According to reported data, the following countries have the lowest total annual biomass 

resources (< 100 PJ): Bulgaria (42 PJ), Belgium (50 PJ), Denmark (34 PJ), Estonia, (48 PJ), 

Lithuania (47 PJ), Slovenia (53 PJ), Slovak Republic (72 PJ), the Netherlands (77 PJ) and 

Greece (74 PJ). In turn, Germany (1,080 PJ), Sweden (841 PJ), Spain (588 PJ), France (574 

PJ), Italy (484 PJ) and Finland (428 PJ), are the EU countries endowed with the richest 

biomass resources, Figure 2. Sweden, Finland, Germany and France have the largest volumes 

of forest residues. 

 

Figure 2. Biomass resources by different types in the EU-24 and Norway. (Source: 

EUBIONET III, 2011) 
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1.1.4 Conditions for efficient exploitation 

 

While planning biomass energy utilization, it is essential to define the reasons and the goals to 

use it since the establishment of the most appropriate production systems depends on these 

factors. There is a wide variety of reasons for using biomass-based energy in a local 

community, in a village, in a town or within a national economy: 

 Reduce the emissions of GHGs, 

 Reduce import dependency by increasing self-sufficiency capabilities, 

 Increase the profitability of agricultural production and to diversify it, 

 Increase export revenues, 

 Import raw materials, 

 Meet the investors’ needs, if the power plant is regarded as it is financed like a 

company’s investment. 

 

Certainly, the reasons above have different emphasis while creating a strategy, but it is not 

possible to fulfil them jointly and simultaneously at a 100%. However, in terms of 

sustainability it is achievable to select the principles that determine the ranking of these 

objectives.   

 

According to these principles, the use of biomass for energy production is reasonable 

primarily for environmental purposes, to reduce GHGs. So it is not practical to develop and 

operate energy producing systems, which emission more GHGs than the replaced systems. An 

important goal of bioenergy development is to increase energy independence, which may also 

cut down import costs and may improve the trade balance. In addition, developments aiming 

to diversify the economy of the rural population, to achieve energy independence and to 

increase incomes while making them more predictable, can also improve the population 

retaining ability of the rural territories.  
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MODULE 3: BIOMASS 

 

CHAPTER 1. Technical aspects. 

 

Subchapter 1.2.: Technical alternatives and installation types for ‘biomass’ installations 

applicable for rural development. 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: The chapter gives an introduction to the main concepts of biomass. The students 

get familiar with the categories of biomass materials and the principles of biomass utilization. 

The chapter also gives a detailed analysis about the utilization of biomass, the technical 

alternatives and installation types of biomass power plant. By acquiring the material of the 

subchapter, the students get familiar with the concepts concerned with biomass, the principles 

of biomass energy utilization, the status of biomass in Europe and the conditions for efficient 

exploitation. 

 

Technical alternatives and installation types for ‘biomass’ installations applicable for 

rural development: Introduction. 

 

The majority of biomass that is available for bioenergy projects is solid unprocessed plant 

material with moisture content that is generally around 50%. There is a wide range of 

available biomass resources associated with human activity, particularly, residues and wastes 

from agricultural, industrial, municipal, forest and other economic activities. All these 

resources can be processed taking into account different technologies: direct combustion (for 

power and/or heat, CHP systems), anaerobic digestion (CHP, for methane rich gas), 

fermentation (of sugars for alcohols, bioethanol), oil extraction (for biodiesel), pyrolysis (for 

bio-char, gas and oils), and gasification (for carbon monoxide CO and hydrogen H2 rich 

syngas) (see Figure 1). 

 

There are a number of technological options available to make use of a wide variety of 

biomass types as a renewable energy source. Conversion technologies may release the energy 

directly, in the form of heat or electricity, or may convert it to another form, such as liquid 

biofuel or combustible biogas. While for some classes of biomass resource there may be a 

number of usage options, for others there may be only one appropriate technology. 

 

Each technology process can also be followed by an array of secondary treatments (i.e.: 

stabilisation, dewatering, upgrading, refining) depending on specific final products. The 

versatility of biomass processing technologies to produce energy and materials in electricity, 

heat or CHP system, gas, liquids and solid forms, are shown in Table 1. 

 

Table 1. Overview of biomass Technologies. (Source: Riva, G. et. al., 2012) 

Technologies 
Energy and Biofuel Outputs 

Heat Electricity Gas Liquid Solids 

Direct Combustion X X    

Anaerobic Digestion X X X   

Fermentation    X  
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Oil Extraction    X  

Pyrolysis X X X X X 

Gasification X X X X  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conversion process of biomass to energy. (Source: Tóth – Bulla – Nagy, 2008) 
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A synthesis of the key factors for biomass processing technologies is presented in Table 2. 

Thermal technologies are the least sensitive to the qualities of the feedstock and can 

effectively process lignocellulosic materials. These technologies are the most sizeable and do 

not require on grown purpose biomass. Technologies different from direct combustion are 

significantly limited in scale for their dependence on specific and finite feedstocks. 

Technologies that provide high volume and value opportunities are at present the less 

developed and are candidates for future innovation. 

 

Table 2. Comparison between Technologies for the energy conversion of Biomass. (Source: 

Riva, G. et. al., 2012) 

Biomass 

processing 

technology 

Possible 

Scale
1
 

Feedstock 

Flexibility 

Conversion 

efficiency
2
 

Output 

Flexibility 

Market 

Value of 

Product 

Development 

Status 

Direct 

Combustion 
Large High Low Low Low Established 

Anaerobic 

Digestion 
Small Medium Medium Low Medium Established 

Fermentation Medium
3
 Medium

4
 Medium Low High Established 

Oil 

Extraction / 

Esterification 

Small Low High Low High Established 

Pyrolysis Large High Medium High Medium 
Early 

Commercial 

Gasification Large Medium Medium Medium
5
 Medium 

Early 

Commercial 
1 Scale of possible industry is dependent on the scale of the available biomass resource. Those technologies able 

to use lignocellulosic biomass are at an advantage. 
2 Energy efficiency measures the amount of energy in the feedstock retained in the products. 
3 De-polymerisation of cellulose to sugars will allow access to a larger biomass pool; however, this technology is 

not commercially established. 
4 This may be higher if technologies that generate sugar feedstocks from cellulose become mature. 
5 The direct products of gasification are low, but this is the basis to a vast array of fuel and chemical products via 

synthesis reactions. 
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Figure 2. Biomass power generation maturity status. (Source: IRENA 2012 based on EPRI 

2011) 

 

Thermal conversion 

These are processes in which heat is the dominant mechanism to convert the biomass into 

another chemical form. The basic alternatives are separated principally by the extent to which 

the chemical reactions involved are allowed to proceed: 

 

 Combustion 

 Gasification 

 Pyrolysis 

 Hydrothermal upgrading (HTU) 

 Hydroprocessing 

 

1. Combustion 

Combustion is the process with which everyone is familiar by which flammable 

materials are allowed to burn in the presence of air or oxygen with the release of heat. 

So, the basic process is oxidation. 

Combustion is the simplest method by which biomass can be used for energy, and has 

been used for millennia to provide heat. This heat can itself be used in a number of 

ways: 

 Space heating 

 Water (or other fluid) heating for central or district heating 

 Steam raising for electricity generation or motive force. 

 

When the flammable fuel material is a form of biomass, the oxidation is mainly 

performed over the carbon (C) and hydrogen (H) in the cellulose, hemicellulose, 

lignin, and other molecules present to form carbon dioxide (CO2) and water (H2O). 

 

2. Gasification 

Gasification is a partial oxidation process whereby a carbon source such as coal, 

natural gas or biomass, is broken down into carbon monoxide (CO) and hydrogen 

(H2), plus carbon dioxide (CO2), and possibly hydrocarbon molecules such as methane 

(CH4). 

 

This mix of gases is known as 'producer gas' or product gas (or wood gas or coal gas, 

depending on the feedstock), and the precise characteristics of the gas will depend on 

the gasification parameters, such as temperature, and also the oxidizer used. The 

oxidizer may be air, in which case the producer gas will also contain nitrogen (N2), or 

steam, or even oxygen. 

 

Gasification technology can be used for: 

 

 Heating water in central heating, district heating or process heating 

applications 

 Steam for electricity generation or motive force  

 As part of systems producing electricity or motive force  
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 Transport using an internal combustion engine. 

Low temperature gasification: If the gasification takes place at a relatively low 

temperature, such as 700ºC to 1000ºC, the product gas will have a relatively high level 

of hydrocarbons compared to high temperature gasification (see below). As a result it 

may be used directly, to be burned for heat or electricity generation, via a steam 

turbine or, with suitable gas clean up, to run an internal combustion engine for 

electricity generation. 

 

High temperature gasification: Higher temperature gasification (1200ºC to 1600ºC) 

leads to few hydrocarbons in the product gas, and a higher proportion of CO and H2. 

This is known as synthesis gas (syngas or biosyngas) as it can be used to synthesize 

longer chain hydrocarbons using techniques such as Fischer-Tropsch (FT) synthesis. If 

the ratio of H2 to CO is correct (2:1), FT synthesis can be used to convert syngas into 

high quality synthetic diesel biofuel which is completely compatible with conventional 

fossil diesel and diesel engines. 

 

3. Pyrolysis 

 

Pyrolysis is the precursor to gasification, and takes place as part of both gasification 

and combustion.  It consists of thermal decomposition in the absence of oxygen. It is 

essentially based on a long established process, being the basis of charcoal burning. 

The products of pyrolysis include gas, liquid and a sold char, with the proportions of 

each depending upon the parameters of the process. 

 

Applications for pyrolysis include: 

 Biomass energy densification for transport or storage 

 Co-firing for heat or power 

 Feedstock for gasification. 

 

Lower temperatures (around 400ºC) tend to produce more solid char (slow pyrolysis), 

whereas somewhat higher temperatures (around 500ºC) produce a much higher 

proportion of liquid (bio-oil), provided the vapour residence time is kept down to 

around 1s or less.  After this, secondary reactions take place and increase the gas yield. 

 

The bio-oil produced by fast (higher temperature) pyrolysis is described as a dark 

brown, mobile liquid with a heating value about half that of conventional fuel oil.  It 

can be: 

 Burned directly 

 Co-fired 

 Upgraded to other fuels 

 Gasified 

 

It can therefore be used as an energy vector, effectively increasing the energy density 

of biomass for transportation and storage. 

 

4. Hydrothermal upgrading (HTU) 

 

There are a range of less widely practised, biomass conversion technologies that find 

relevance under particular circumstances, or that may be still experimental or use a 
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proprietary technology.  They typically use heat and catalysts to convert biomass into 

another, more convenient form, either of higher energy density or more easily 

exploited. One of these processes is hydrothermal upgrading (HTU). 

 

HTU is a liquefaction process that has been developed specifically to convert high 

moisture content biomass into a product with higher energy density. 

 

5. Hydroprocessing 

 

Hydrogenation of vegetable oils to remove all the unsaturated (double) bonds and the 

glycerol ester component of the triglyceride can be used to yield a range of simple 

paraffins. 

 

Careful control of reaction conditions and subsequent refining can give a high quality 

diesel biofuel, superior to fossil diesel. 

 

Chemical conversion 

A range of chemical processes may be used to convert biomass into other forms, such as to 

produce a fuel that is more conveniently used, transported or stored, or to exploit some 

property of the process itself. 

1. Biochemical conversion 

As biomass is a natural material, many highly efficient biochemical processes have 

been developed in nature to break down the molecules of which biomass is composed, 

and many of these biochemical conversion processes can be harnessed. 

 

Biochemical conversion makes use of the enzymes of bacteria and other micro-

organisms to break down biomass. In most cases micro-organisms are used to perform 

the conversion process: 

 Anaerobic digestion 

 Fermentation 

 Composting 

a. Anaerobic digestion 

Anaerobic digestion (AD) is the process whereby bacteria break down organic 

material in the absence of air, yielding a biogas containing methane. 

 

The products of this process are: 

 Biogas (principally methane (CH4) and carbon dioxide (CO2)) 

 A solid residue (fibre or digestate) that is similar, but not identical, to compost  

 A liquid liquor that can be used as a fertilizer. 

 

NB, the term whole digestate can be used to describe the unseparated fibre and liquor. 

AD has been used to process sewage sludge since the 19th century. It is also the 

natural process that can break down organic material in pools and marshes to produce 

marsh gas and in landfills to produce landfill gas. AD is typically performed on 

biological material in an aqueous slurry. However there are an increasing number of 

'dry' digesters. 
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The methane can be burned for heat or electricity generation.  

There are two basic AD processes, which take place over different temperature ranges. 

Mesophilic digestion takes place between 20ºC and 40ºC and can take a month or two 

to complete. Thermophilic digestion takes place from 50-65ºC and is faster, but the 

bacteria are more sensitive. 

b. Fermentation 

Fermentation is the process used in brewing and wine making for the conversion of 

sugars to alcohol (ethanol – CH3CH2OH). The same process, followed by distillation, 

can be used to obtain pure ethanol (bioethanol) for use as a transport biofuel. 

Conventional fermentation processes for the production of bioethanol make use of the 

starch and sugar components of typically cereal or sugar (beet or cane) crops. Second 

generation bioethanol precedes this with acid and/or enzymatic hydrolysis of 

hemicellulose and cellulose into fermentable saccharides to make use of a much larger 

proportion of available biomass. 

(Bio)ethanol can be readily added to conventional petrol in concentrations up to 10%, 

but most European manufacturers' vehicle warranties only cover up to a 5% bioethanol 

versus 95% petrol blend. Higher concentrations are also possible, however 

modifications are required in vehicles to use them.  Flex fuel vehicles (FFVs) can run 

on either high bioethanol blends or 100% fossil fuels and many of the major vehicle 

manufacturers are developing them. There are also fuel handling issues associated 

with higher ethanol concentrations concerning its vapour pressure and affinity for 

water. Biobutanol, derived from bioethanol, has been proposed as an alternative that 

does not suffer from the above fuel handling issues. 

c. Composting 

 

Similarly to anaerobic digestion, though making use of different bacteria, composting 

is the aerobic decomposition of organic matter by microorganisms. It is however 

typically performed on relatively dry material rather than a slurry. 

Instead of, or in addition to, collecting the flammable biogas emitted, the exothermic 

nature of the composting process can be exploited and the heat produced used, usually 

using a heat pump. 

2. Transesterification 

 

This chemical conversion process can be used to convert straight and waste vegetable 

oils into biodiesel. 

Vegetable oils and animal fats are triglycerides: esters of glycerol with three fatty acid 

chains. Although some unmodified vegetable oils have been used as fuel in internal 

combustion engines, in general the viscosity is significantly higher than that of 

conventional diesel and a number of modifications are required to a vehicle's fuel 

system (including heaters, additional filters and modified injectors) to use them. Even 

then, the lack of a transport fuel specification for straight vegetable oil (SVO) and 
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concerns about long term engine reliability using SVO as a fuel, make this inadvisable 

for the present. 

Instead, SVO and filtered waste vegetable oil (WVO) can be reacted with methanol (or 

ethanol) to change the triglyceride esters into methanol (or ethanol) monoesters, each 

with single fatty acid chains making fatty acid methyl ester (FAME), commonly 

known as biodiesel, although not all oils and fats are suitable for this process. 

The biodiesel produced can be used on its own or mixed with petroleum based diesel 

fuel as a 5% biodiesel / 95% fossil diesel blend and used by unmodified, conventional 

diesel engines. The European standard for FAME biodiesel is EN14214. 

 
Figure 3. Schematic view of the variety of commercial and developing bioenergy routes from 

biomass feedstocks through thermochemical, chemical, biochemical and biological 

conversion routes to heat, power, CHP and liquid or gaseous fuels. (Source: UNIDO, 2014) 

 

1.2.1 Characteristics of biomass combustion 

 

The easiest way to produce energy from biomass is combustion. The heat obtained from the 

combustion is utilized by heating supplies (e.g. biomass heating plants in villages). The firing 

characteristics of biomass fuels are usually different, meanwhile other features are nearly the 

same. The calorific value of by-products depends on the material, the influencing 

environmental factors (storage conditions, humidity, etc.), but it is primarily influenced by the 

carbon content. Based on Table 3, the value is generally below 50% (the carbon content of 

coals ranges from 80% to 92%). The presence of hydrogen and sulphur are approximately the 

same, but in small quantities. The low sulphur content is favourable from an environmental 

perspective. However, the low hydrogen content is not beneficial in terms of calorific value.  
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Table 3. Elemental composition and calorific value of biomass. (Sources: Tóth – Bulla – 

Nagy, 2011 and Gergely, 2012) 

Type of 

biomass 

Chemical ingredients,% 
Heating 

value 
Ash 

Volatile 

matter 

C H O N S MJ/kg % % 

Wheat straw 45 6 43 0.6 0.12 17.3 5.28 74  

Corn stalk 44 5.8 40 1.3 0.12 17.5 8.78 76  

Wood 47 6.3 46 0.16 0.02 18.5 0.52 85  

Bark 47 5.4 40 0.4 0.06 16.2 7.14 76  

Wood with bark 47 6 44 0.3 0.05 18.1 2.65 82  

Miscanthus 46 6 44 0.7 0.1 17.4 3.2 80  

Canola oil 77 12 11 0.1 0 26.9 0 100  

Ethanol  52 13 25 0 0 26.9 0 100  

Methanol 38 12 50 0 0 19.5 0 100 

 

Due to the fact that oxygen is utilized during combustion, the amount of produced gas is less 

than in the case of coal burning. The moisture content not only reduces the efficiency of 

calorific heating, but it also increases the amount of flue gas, which may cause a problem 

during the process because of condensation.  

 

One important characteristic is high volatile matter content. For example, in the case of cereal 

straw, from the share of combustible substances (82-86%), 70-80% is made up of volatile 

matter. They are released in large quantitates at the temperature of 250-300°C during the 

combustion process. This means that the material of the furnace need to be adaptable to 

material to be burnt, because in the case of incomplete combustion toxic CO is generated, less 

heat is released and the flue gases my contain combustible constituents. 

 

Due to the combustion of volatile gases secondary air has to be imported to the furnace. If this 

is not done, as a result of incomplete combustion phenolic compounds, tar, etc. (are) is 

formed, which can be deposited on the boiler wall and in the chimney. In addition to CO, the 

flue gases of incomplete combustion contain large quantities of dust as well. 

 

The variety of wood types for firing purposes is wide: firewood, logs, pine sawdust and 

sawmill by-products. The amount of energy recovered from wood can be characterized on the 

basis of heating value. The calorific value depends on the moisture content and on the species 

of wood, too. 

 

Table 4. Heating value of the different tree species. (Source: Tóth – Bulla – Nagy, 2011) 

Wood species Heating value (kj/kg) 

Pines 

Spruce 19,478 

Fir 17,648 

Larch 16,612 

Soft wood 

Silver birch 18,439 

Oak 18,176 

Turkey oak 18,135 



                                                                                  

                                                                              

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

10 

Renewable energy for local development course 

Ash (Fraxinus) 18,125 

Maple 17,774 

Poplar 17,497 

Black locust 17,485 

Hornbeam 17,464 

Willow 17,012 

 

The difference between the species on the basis of calorific value is negligible.  

 

The moisture content and calorific value are inversely proportional. The more water is 

contained in the tree, the less the calorific value is since the water evaporates during the 

combustion process. The change of heating value regarding moisture content can be seen is 

Table 5. 

 

Table 5. Change of heating value regarding moisture content. (Source: Tóth – Bulla – Nagy, 

2011) 

The state of tree Moisture content Heating value 

In the forest 50-60% 2.0 kWh/kg = 7.1 MJ/kg 

Stored one summer long 25-35% 3.4 kWh/kg = 12.2 MJ/kg 

Stored for several years  15-25% 2.0 kWh/kg = 14.4 MJ/kg 

 

The heat required for evaporation of water (approx. 2.5 MJ/kg) occurs as a loss. 

 

Table 6. Energetic characteristics of biomass fuels. (Source: Kocsis in Grassi – Collina – 

Zibetta, 1990) 

 Moisture 

content 

% 

Biomass yields 

t/ha 

Calorific value 

MJ/kg 

Net heat* 

equivalent 

kgOE/kg 

Net energy* 

density 

kgOE/ha 

Cereal straw 10-15 1.5-3.5 15.3-16.2 0.29-0.31 435 - 1085 HE 

Rice straw 20-25 1.3-3.2 13.5-14.4 0.26-0.28 338 - 986 HE 

Sunflower stem 25-30 1.9-3.5 12.4-13.5 0.24-0.26 456 - 910 HE 

Corn stem 30-40 3.5-5.5 10.2-12.4 0.19-0.24 665 - 1320 HE 

Fuelwood 15-25 2.0-2.5 13.5-15.3 0.26-0.29 520 - 725 HE 

Forest residues 25-30 1.5-2.0 12.4-13.5 0.21-0.23 311 - 451 HE 

Short rot. chips 25-35 8.0-9.0 11.3-13.5 0.22-0.26 1760- 2610 HE 

Silage for 

biogas 
- 8.0-9.0 10.5-12.6 0.22-0.26 2000-2700 LF 

Oilseed rape - 1.0-1.5 35.6-36.8 0.85-0.88 850 – 1320 LF 

Straw 10-15 3.0-4.0 15.3-16.2 0.29-0.31 870 – 1240 LF 

Bio-ethanol - 1.5-3.5 25.1-27.1 0.6-0.66 900 – 2275 LF 

* Efficiency: 80%; HE–Heat; LF–Liquid Fuels 

 

Biomass energy sources are decentralized and cheap renewable energies suitable for direct 

combustion and, through many available technologies for conversion into more valuable 

secondary energy carriers, such as compacted solid fuels, liquid or gaseous bio-fuels and 

electricity. The transportation, storing and handling of biomass are much easier than those of 

other renewable energy sources, like solar, wind or geothermal energy. The calorific value of 

bone dry biomass (17–18 MJ/kg or 0.41–0.43 kgOE/kg) is equal to that of medium quality 

coal and, even air-dry biomass at 10–20% moisture content has an energy equivalent of 0.3–

0.4 kgOE/kg. 
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Due to the low spatial net energy density, these energy sources can be used primarily for 

fulfilling the needs of small and medium performance power plants, which meet the local heat 

and electricity demands. 
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MODULE 3: BIOMASS 

 

CHAPTER 1. Technical aspects. 

 

Subchapter 1.3.: Calculations and design. 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: In this section, a detailed-analysis of different biomass-based installations is 

presented from low scale to high scale, i.e. from woody biomass to biogas. There are a lot of 

approaches in literature regarding biomass utilization technics. In this regard, the types set 

down by Sjaak Van Loo and Jaap Koppejan are explained in the following
1
.  

Residential wood-burning appliances 

Wood fire has been used as a heat source for thousands of years. During that time, the 

methods for burning wood and other biomass have progressed from an open pit to very 

sophisticated, controlled combustion systems. A number of appliance types have been 

developed to provide central heating using furnaces or boilers, or more localized using stoves 

and fireplaces. The traditional batch-fired systems burning firewood have been augmented by 

systems designed to burn pelletized wood wastes, agricultural grains or woodchips. The 

pressure to develop systems which minimize air pollution and maximize heating efficiency 

has led to imaginative and innovative new designs. 

Provided that firewood is grown in a sustainable manner and used in efficient combustion 

systems with insignificant hydrocarbon emissions, firewood is a renewable energy source. 

Already today, it is a significant heating source in most of the world. Due to its potential for 

being CO2 neutral, an increased use of small-scale combustion systems can have a significant 

impact on reducing greenhouse gas emissions.  

The fuels in use are mainly wood logs, both soft wood and hard wood. In wood stoves and 

boilers, wood briquettes, wood pellets, peat, peat briquettes and coal briquettes are also used 

to some extent. Wood pellets are also used in specially designed pellet stoves and pellet 

boilers. 

Combustion technologies for industrial and district heating systems 

This section describes combustion systems of a nominal thermal capacity exceeding 100kW. 

These furnaces are generally equipped with mechanical or pneumatic fuel-feeding systems. 

Manual fuel-feeding is no longer customary due to high personnel costs and strict emission 

limits. Moreover, modern industrial combustion plants are equipped with process control 

systems supporting fully automatic system operation. In principle, the following combustion 

technologies can be distinguished: 

 fixed bed combustion; 

 fluidized bed combustion; and 

                                                           
1
 The figures are cited from ‘The Handbook of Biomass Combustion and Co-firing’, therefore all credit goes to 

the authors of the book in this regard. 
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 pulverized fuel combustion. 

 

 
Figure 1. Principal combustion technologies for biomass. (Source: van Loo – Koppejan, 

2008) 

 

1. Grate furnaces 

 There are various grate furnace technologies available: fixed grates, moving grates, 

travelling grates, rotating grates and vibrating grates. 

 Grate furnaces are appropriate for biomass fuels with high moisture content, varying 

particle sizes (with a downward limitation concerning the amount of fine particles in 

the fuel mixture) and high ash content.  

 Mixtures of wood fuels can be used, but current technology does usually not allow for 

mixtures of wood fuels and straw, cereals and grass, due to their different combustion 

behaviour, low moisture content and low ash-melting point. 

 A well-designed and well-controlled grate guarantees a homogeneous distribution of 

the fuel and the bed of embers over the whole grate surface. 

 The primary air supply must be divided into sections in order to be able to adjust the 

specific air amounts to the requirements of the zones where drying, gasification and 

charcoal combustion prevail. 

 Staged combustion should be obtained by separating the primary and the secondary 

combustion chambers in order to avoid back-mixing of the secondary air and to 

separate gasification and oxidation zones 

 Based on the flow directions of fuel and the flue gas, there are three systems of 

operation for grate combustion plants: 

o counter-current flow (flame in the opposite direction to the fuel); 

o co-current flow (flame in the same direction as the fuel); and 

o cross-flow (flue gas removal in the middle of the furnace). 
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Figure 2. Classification of grate combustion technologies. (Source: van Loo – Koppejan, 

2008) 

 

2. Underfeed stokers 

 Underfeed stokers represent a cheap and operationally safe technology for small and 

medium-scale systems up to a nominal boiler capacity of 6MWth. 

 The fuel is fed into the combustion chamber by screw conveyors from below and is 

transported upwards on an inner or outer grate.  

 Outer grates are more common in modern combustion plants because they allow for 

more flexible operation and an automatic ash removing system can be applied more 

easily.  

 Primary air is supplied through the grate, secondary air is usually supplied at the 

entrance to the secondary combustion chamber. 

 Underfeed stokers are suitable for biomass fuels with low ash content (woodchips, 

sawdust, pellets) and small particle sizes (up to 50 mm).  

 Ash-rich biomass fuels such as bark, straw and cereals need more efficient ash 

removal systems.  

 Moreover, sintered or melted ash particles covering the upper surface of the fuel bed 

can cause problems in underfeed stokers, due to unstable combustion conditions when 

the fuel and the air break through the ash-covered surface.   

 An advantage of underfeed stokers is their good partial-load behaviour and their 

simple load control.  

 Load changes can be achieved more easily and quickly than in grate combustion 

plants, because the fuel supply can be controlled more easily and the fuel mass in the 

furnace is comparatively low. 

 
Figure 3. Underfeed stoker furnace. (Source: van Loo – Koppejan, 2008) 
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3. Fluidized bed combustion 

 Fluidized bed combustion (FBC) systems have been applied since 1960 for 

combustion of municipal and industrial wastes.  

 Since then, over 300 commercial installations have been built worldwide. 

 Regarding technological applications, bubbling fluidized beds (BFB) and circulating 

fluidized beds (CFB) have to be distinguished (the following general features are 

characterizing both types). 

 A fluidized bed consists of a cylindrical vessel with a perforated bottom plate filled 

with a suspension bed of hot, inert and granular material.  

 The common bed materials are silica sand and dolomite.  

 Primary combustion air enters the furnace from below through the air distribution 

plate and fluidizes the bed so that it becomes a seething mass of particles and bubbles.  

 The intense heat transfer and mixing provides good conditions for complete 

combustion with low excess air demand. 

 The combustion temperature has to be kept low (usually 650–900°C) in order to 

prevent ash sintering in the bed.  

 Due to the good mixing achieved, FBC plants can deal flexibly with various fuel 

mixtures (e.g. mixtures of different kinds of woody biomass fuels can be burned) but 

are limited when it comes to fuel particle size and impurities contained in the fuel. 

 Therefore, an appropriate fuel pre-treatment system for particle size reduction and 

separation of metals is necessary for fail-safe operation. 

 Fluidized bed combustion systems need a relatively long start-up time (approximately 

8–15 hours) for which oil or gas burners are used.  

 With regard to emissions, low NOx emissions can be achieved owing to good air 

staging, good mixing and a low requirement of excess air.  

 One disadvantage of FBC plants is posed by the high dust loads entrained with the flue 

gas, which make efficient dust precipitators and boiler cleaning systems necessary. 

  
Figure 4. A BFB furnace (on the left) and a CFB furnace (on the right). (Source: van Loo 

– Koppejan, 2008) 
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Table 1. Overview of advantages, disadvantages and fields of application of various biomass 

combustion technologies. (Source: van Loo – Koppejan, 2008) 

Advantages Disadvantages 

Grate furnaces 

 low investment costs for plants < 20 MWth 

 low operating costs 

 low dust load in the flue gas 

 less sensitive to slagging than fluidized bed furnaces 

 usually no mixing of wood fuels and herbaceous 

fuels possible (only special constructions can cope 

with such fuel mixtures) 

 efficient NOx reduction requires special 

technologies (combination of primary and 

secondary measures) 

 high excess oxygen (5–8 vol%) decreases 

efficiency 

 combustion conditions not as homogeneous as in 

fluidized bed furnaces 

 low emission levels at partial load operation require 

a sophisticated process control 

Underfeed stokers 

 low investment costs for plants < 6 MWth 

 simple and good load control due to continuous fuel 

feeding and low fuel mass in the furnace 

 low emissions at partial load operation due to good 

fuel dosing 

 low flexibility in regard to particle size 

 suitable only for biomass fuels with low ash content 

and high ash-melting point (wood fuels) (< 50 mm) 

BFB furnaces 

 no moving parts in the hot combustion chamber  

 NOx reduction by air staging works well 

 high flexibility concerning moisture content and 

kind of biomass fuels used  

 low excess oxygen (3–4 Vol%) raises efficiency and 

decreases flue gas flow  

 

 high investment costs, interesting only for plants > 

20 MWth 

 high operating costs 

 reduced flexibility with regard to particle size (< 80 

mm) 

 utilization of high alkali biomass fuels (e.g. straw) 

is critical due to possible bed agglomeration 

without special measures 

 high dust load in the flue gas 

 loss of bed material with the ash without special 

measures 

CFB furnaces 

 no moving parts in the hot combustion chamber 

 NOx reduction by air staging works well 

 high flexibility concerning moisture content and 

kind of biomass fuels used 

 homogeneous combustion conditions in the furnace 

if several fuel injectors are used 

 high specific heat transfer capacity due to high 

turbulence 

 use of additives easy 

 very low excess oxygen (1–2 vol%) raises efficiency 

and decreases flue gas flow 

 high investment costs, interesting only for plants > 

30 MWth 

 high operating costs 

 low flexibility with regard to particle size (< 40 

mm)  

 utilization of high alkali biomass fuels (e.g. straw) 

is critical due to possible bed agglomeration 

 high dust load in the flue gas 

 loss of bed material with the ash without special 

measures 

 high sensitivity concerning ash slagging 

 

Power generation and co-generation 

 

Power generation by combustion can be mainly divided into closed thermal cycles and open 

processes.  

 

In closed thermal cycles, among which the steam turbine is the most important application, 

the combustion process and the power generation cycle are physically separated by a heat 

transfer from the hot combustion gas to a process medium used in a secondary cycle. Thanks 
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to the separation between fuel and engine, the engine is solely in contact with a clean process 

medium and thus undesired elements in the fuel and flue gas such as fly-ash particles cannot 

cause damage to the engine. Hence closed cycles are well suited for solid fuels and widely 

applied for power production from coal, biomass and municipal solid waste. 

 

Open processes are commonly applied for gaseous and liquid fuels used in internal 

combustion engines and gas turbines. The fuel is burned either directly inside an internal 

combustion engine, which is operated cyclically as a four-stroke or two-stroke engine, or it is 

burned continuously in an external combustion chamber and then led through an open gas 

turbine for expansion. The use of solid fuels in internal combustion engines is technically not 

feasible and their application in open gas turbines is regarded as complex. Nevertheless, two 

technologies for the direct use of biomass are being considered in open gas turbines: 

 Directly-fired gas turbines by pressurized combustion of pulverized biomass with 

consecutive expansion of the purified flue gas to atmosphere in a gas turbine, 

 Directly-fired gas turbines by atmospheric combustion of pulverized biomass with 

expansion of the purified flue gas to vacuum, followed by gas cooling and a 

compression of the cold gas to enable gas exhaust to the atmosphere. 

 

Closed thermal cycles for power production 

 

The processes and engine types are: 

 Steam turbines and steam engines used as expansion engines in the Rankine cycle, 

where water is evaporated under pressure to high-pressure steam that is then expanded 

to low pressure in the expansion engine. 

 Steam turbines used in an Organic Rankine cycle (ORC) with use of an organic 

medium instead of water, used in a tertiary cycle separated from the heat production 

(the combustion heat is transferred to a thermal oil in the boiler which is fed to an 

external evaporator for the organic medium with a lower boiling temperature than 

water). 

 Stirling engines (indirectly fired gas engines using the Stirling cycle) which are driven 

by a periodic heat exchange from the flue gas to a gaseous medium such as air, helium 

or hydrogen. 

 Closed gas turbines using a closed cycle with air, helium or hydrogen which is 

compressed, heated, and then expanded to drive a turbine as an expansion engine 

(similar to a Stirling engine). 

 Closed gas turbines using a heat transfer to compressed air, which is expanded in a gas 

turbine as an expansion engine and then fed to the boiler as combustion air (hence the 

thermodynamic cycle corresponds to a closed gas turbine, although the mass flow 

through the gas turbine is not physically closed). 

 

Table 2. Closed processes for power production by biomass combustion. (Source: van Loo – 

Koppejan, 2008) 

Working medium Engine type Typical size Status 

Liquid and vapour (with 

phase change) 

Steam turbine 500kWe – 500MWe Proven technology 

Steam piston engine 25kWe – 1.5MWe Proven technology 

Steam screw engine 

Not established, 

estimated range from 

500kWe – 2MWe 

One demonstration plant 

with 730kWe and turbine 

from commercial screw 

compressor 

Steam turbine with 400kWe – 1.5MWe Some commercial plants 
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organic medium (ORC) with biomass 

Gas (without phase 

change) 

Closed gas turbine (hot 

air turbine) 

Not established, similar 

size as steam turbine, 

probably large due to cost 

and efficiency 

Concept and 

development 

Stirling engine 1kWe – 100kWe Development and pilot 

 

Co-combustion 

 

Increasing concerns about the environmental impacts of power generation from fossil fuels 

have prompted the development of more sustainable means of generating power. These have 

included increasing the fraction of renewable and sustainable energy in the national energy 

supply. Historically, renewable energy sources have struggled to compete with fossil energy, 

due to their relatively high costs, and high technical risk. 

 

The co-firing of biomass with coal in conventional coal-fired boilers can provide a reasonably 

attractive option for the utilization of biomass for the generation of power, and in some cases 

heat. Co-firing makes use of the extensive infrastructure associated with the existing fossil 

fuel-based power systems, and requires only relatively modest additional capital investment. 

In most countries, the co-firing of biomass is one of the most economic technologies available 

for providing significant CO2 reductions. 

 

Overall, the principal driver for the increasing demand for the capability to co-fire biomass 

materials in new and existing coal boiler plants is therefore that co-firing is regarded as 

representing a very attractive option for biomass utilization, and for the delivery of renewable 

energy, in terms of the capital investment requirement, security of supply, power generation 

efficiency and generation cost. 

 

The great majority of biomass co-firing worldwide is carried out in large pulverized coal 

power boilers, and the focus in this section is very much on this type of plant. The basic co-

firing options relevant to pulverized coal-fired power plants can be categorized as follows: 

 direct co-firing, which involves the direct feeding of the biomass to the coal firing 

system or the furnace. 

 indirect co-firing, which involves the gasification of the biomass and the combustion 

of the product fuel gas in the furnace. 

 parallel combustion, which involves the combustion of the biomass in a separate 

combustor and boiler and the utilization of the steam produced within the coal plant 

steam and power generation systems. 

 

1. Direct co-firing 

The direct co-firing approach can be implemented in a number of ways. The first option 

involves mixing the bio-fuel with the coal upstream of the coal feeders, and generally 

within the coal conveying system. The mixed fuel is then processed through the installed 

coal milling and firing system. This is the simplest option and involves the lowest capital 

cost. This approach has been applied widely for co-firing biomass materials in granular, 

pelletized and dust forms, generally at relatively low co-firing ratios. 

 

The second option involves separate handling, metering, and comminution of the biofuel 

and injection into the pulverized fuel pipework upstream of the burners or at the burners. 

This option can permit co-firing at elevated levels. 
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The third option involves the separate handling and comminution of the bio-fuel with 

combustion through a number of dedicated burners. This approach involves significant 

modification of the combustion equipment and the furnace, and represents the highest 

capital cost direct co-firing option. It is, in principle, possible to inject the pre-milled 

biomass into the upper furnace as a reburn fuel for NOx emission control. However, this 

option needs significant further development prior to full scale implementation. Some test 

work has been carried out in small scale test facilities. 

 

 
Figure 5. Biomass co-firing system at St Andrea, Austria. (Source: van Loo – Koppejan, 

2008) 

2. Indirect co-firing 

The indirect co-firing approach is based on the gasification of biomass, with the product fuel 

gas being combusted directly in the coal-fired furnace. The main product of the gasification 

process is a low calorific value fuel gas, with the calorific value depending principally on the 

moisture content of the fuel. The other major products are: 

 all of the biomass ash materials, including the alkali metals and trace metals, 

 the tars and other condensable organic species,  

 the Cl, N and S species. 

In terms of the nature and cost of the installed equipment, the indirect co-firing is equivalent 

to the replacement of the comminution equipment by a gasifier, i.e. the gasifier can be 

regarded as being a form of bio-fuel pre-processing. On the scale of operation relevant to 

most utility boiler co-firing projects, the preferred systems for biomass gasification are 

airblown, atmospheric pressure, circulating fluidized beds. There are a number of gasification 

technologies of this type, from a number of suppliers, in demonstration or commercial 

operation. One of the key issues with indirect co-firing approach is the degree of the fuel gas 

cleaning prior to co-combustion in the coal-fired furnace. 

 

3. Parallel co-firing 

Parallel firing involves the installation of a separate combustor and boiler for the biomass to 

produce steam which, in turn, is used in the coal-fired power plant steam circuit. Although 

parallel firing installations involve significantly higher capital investment than direct co-

combustion systems, they may have advantages such as the possibility to use relatively 

difficult fuels with high alkali metal and chlorine contents and the production of separate coal 

and biomass ash streams. 
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MODULE 3: BIOMASS 

 

CHAPTER 2. Economic aspects. 

 

Subchapter 2.1.: Estimation cost of the investment (materials, installations, spatial planning). 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: In this chapter, students get familiar with the most important costs associated to a 

biomass power plant installation: feedstock prices and power generating technology costs.  In 

addition to the calculation of levelized cost of electricity, the students learn to calculate 

different economic standards and indexes to decide whether a biomass power plant is cost-

efficient. The subchapter is widely concerned with the levelized cost of electricity, costs of 

different biomass power generating technologies, feedstock prices and technology costs. The 

last part presents the costs of a biomass combustion plant. 

 

Introduction. 

Given the many options available, the cost of bioenergy systems cannot be easily summarized 

in the way in which other renewables, such as wind and solar, can be. In some cases regarding 

biomass, costs are expected to come down considerably once large-scale systems are 

commercialized. Also note that performance changes with the quality of biomass supply, a 

fact that impacts the exploitation costs. For example, in some cases the incineration of waste 

wood results in lower efficiency due to the considerable variation in the combustion 

properties of wastes and the difficulty of controlling these variations during operation. 

 

Levelized cost of electricity  

As described in the previous module, the levelized cost of electricity (LCOE), also known as 

Levelized Energy Cost (LEC), is the net present value of the unit-cost of electricity over the 

lifetime of a generating asset. It is often taken as a proxy for the average price that the 

generating asset must receive in a market to break even over its lifetime. It is a first-order 

economic assessment of the cost competitiveness of an electricity-generating system that 

incorporates all costs over its lifetime: initial investment, operations and maintenance, cost of 

fuel, cost of capital. 

 

The LCOE is that value for which an equal-valued fixed revenue delivered over the life of the 

asset's generating profile would cause the project to break even. This can be roughly 

calculated as the net present value of all costs over the lifetime of the asset divided by the 

total electrical energy output of the asset. Then, it is given by: 

 

𝐿𝐶𝑂𝐸 =  
𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑠𝑡𝑠 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑠𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
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𝐿𝐶𝑂𝐸 =  

∑
𝐼𝑡 + 𝑀𝑡 + 𝐹𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

 

where: 

 

It: investment expenditures in the year t 

Mt: operations and maintenance expenditures in the year t 

Ft: fuel expenditures in the year t 

Et: electrical energy generated in the year t 

r: discount rate 

n: expected lifetime of system or power station 

 

Although different cost measures are useful in different situations, the LCOE of renewable 

energy technologies is a widely used measure by which renewable energy technologies can be 

evaluated for modelling or policy development purposes.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Renewable power generation costs indicators and boundaries 

 

 
Figure 2. The LCOE framework for biomass power generation (Source: IRENA, 2012) 
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Figure 1 and 2 show the renewable power generation costs indicators and boundaries and the 

framework for biomass power generation related to LCOE. Figure 1 also reveals the 

occurrence of different costs in addition to the main boundaries and processes in connection 

with LCOE, while Figure 2 is more concerned with the financial characteristics and the 

features, and the extent of costs.   

Costs of different biomass power generating technologies 

The total installed costs of biomass power generation technologies varies significantly by 

technology and country. The total installed costs of stoker boilers were between 1,700 € and 

3,830 €/kW in 2010, while those of circulating fluidised bed boilers were between 1,950 € 

and 4,050 €/kW. Anaerobic digester power systems had capital costs between 2,300 € and 

5,500 €/kW. Gasification technologies, including fixed bed and fluidised bed solutions, had 

total installed capital costs ranged between 1,920 € and 5,130 €/kW. Co-firing biomass at 

low-levels in existing thermal plants typically requires additional investments of 360 € to 540 

€/kW. Using landfill gas for power generation has capital costs ranged between 1,720 € and 

2,200 €/kW. The cost of CHP plants is significantly higher than for the electricity-only 

configuration. 

 

Table 1. Typical capital costs and levelized costs of electricity of biomass power technologies 

(Source: IRENA, 2012). 

 Investment costs (€/kW) LCOE range (€/kWh) 

Stoker boiler 1,700 – 3,830 0.05 – 0.19 

Bubbling and circulating 

fluidised boilers 
1,950 – 4,050 0.06 – 0.19 

Fixed and fluidised bed 

gasifiers 
1,920 – 5,130 0.06 – 0.21 

Stoker CHP 3,200 – 6140 0.06 – 0.26 

Gasifier CHP 5,000 – 5,890  0.10 – 0.25 

Landfill gas 1,720 – 2,200 0.08 – 0.11  

Digesters 2,300 – 5,500 0.05 – 0.13 

Co-firing 125 – 765  0.03 – 0.11 

 

Many biomass power generation options are mature, commercially available technologies 

(e.g. direct combustion in stoker boilers, low-percentage co-firing, anaerobic digestion, 

municipal solid waste incineration, landfill gas, and combined heat and power). While others 

are less mature and only at the beginning of their deployment (e.g. atmospheric biomass 

gasification and pyrolysis), still others are only at the demonstration or R&D phases (e.g. 

integrated gasification combined cycle, bio-refineries, bio-hydrogen). The potential for cost 

reductions is therefore very heterogeneous. Only marginal cost reductions are anticipated in 

the short-term, but the long-term potential for cost reductions from the technologies that are 

not yet widely deployed is good. 

 

Table 2 presents investment costs for stationary applications of commercial systems using 

combustion or gasification for heat (MW/kWthermal) and power (MW/kWelectrical). 

 

 

 

 



                                                                                  

                                                                               

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

4 

Renewable energy for local development course 

Table 2. Summary of estimated efficiencies, costs and deployment of bioenergy systems 

(Source: FAO 2010 based on Faiij, 2006). 

Process or 

method 
Applications 

Capacity 

range 

Net efficiency 

(lower heating 

value) (%) 

Investment cost 
Deployment 

status 

Combustion 

Heat 

Domestic 

(modern 

furnace) 

1–5 MWth 65–90 300–700 €/kWth 

Increasing use of 

modern furnaces 

and prepared 

biomass (pellets) 

Combined heat 

and power 

District heating, 

industrial uses 
1–10 MWe 

80–100 

(system) 
1500–2000 €/kWe 

Widely deployed 

in Europe and 

North America 

Stand-alone 

Waste 

incineration 
20–100s MWe 

20–30 

(electrical) 
2000–2500 €/kWe 

Low efficiency 

for mass burning/ 

incineration 

High-efficiency 

designs 
20–100s MWe 

30–40 

(electrical) 
1500–2000 €/kWe 

Widely used in 

northern Europe 

Co-firing 
Existing coal 

plants 
5–20 MWe 

30–40 

(electrical) 

~250 €/kWe + 

cost of existing 

plant 

Widely deployed 

Gasification 

Heat Small-scale <1 MWth 
60–90 

(system) 
200–600 €/kWth 

Commercially 

deployed 

Combined-heat-

and- 

power gas 

engine 

Small-scale <1 MWe 15–30 1000–3000 €/kWe 
Limited 

deployment 

Biomass 

gasification 

combined-cycle 

 30-100 MWe 40–50 5000–6000 €/kWe 

Demonstration 

phase at smaller 

scales 

 30-100 MWe 40–50 1000–2000 €/kWe 
Large-scale 

(long-term) 

Notes: kWe = kilowattselectical; kWth = kilowattsthermal; MWe = megawattselectrical; MWth = megawattsthermal 

 

Feedstock prices 

Unlike wind, solar and hydro, biomass electricity generation requires a feedstock that must be 

produced, collected, transported and stored. The economics of biomass power generation are 

critically dependent upon the availability of a secure, long term supply of an appropriate 

biomass feedstock at a competitive cost. 

 

Secure, long-term supplies of low-cost, sustainably-sourced feedstocks are critical to the 

economics of biomass power plants. Feedstock costs can be zero for wastes which would 

otherwise have disposal costs or that are produced onsite at an industrial installation (e.g. 

black liquor at pulp and paper mills or bagasse at sugar mills). Feedstock costs may be modest 

where agricultural residues can be collected and transported over short distances. However, 

feedstock costs can be high where significant transport distances are involved due to the low 

energy density of biomass (e.g. the trade in wood chips and pellets). The analysis in this 

subchapter examines feedstock costs of between 9 €/tonne for low cost residues to 145 

€/tonne for internationally traded pellets. 

 

Feedstock costs can represent 40% to 50% of the total cost of electricity produced. The 

density of the forestry arisings has a direct impact on the radius of transport required to 

deliver a given energy requirement for a plant. The low energy density of biomass feedstocks 
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tends to limit the transport distance from a biomass power plant that it is economical to 

transport the feedstock. This can place a limit on the scale of the biomass power plant, 

meaning that biomass struggles to take advantage of economies of scale in the generating 

plant because large quantities of low-cost feedstock are not available. 

 

Prices for biomass sourced and consumed locally are difficult to obtain and no time series 

data on a comparable basis are available. Prices paid will depend on the energy content of the 

fuel, its moisture content and other properties that will impact the costs of handling or 

processing at the power plant and their impact on the efficiency of generation.  The delivered 

cost will be considerably lower in most developing countries due to low labour costs but 

logistics and transport will tend to be uncertain and/or more expensive. In the case of co-firing 

at coal plants, the woody biomass feedstock can be compared directly. Under stand-alone 

comparisons, however, the investment costs will be considerably lower for coal and therefore 

there will need to be other considerations or other sources of support based on factors such as 

carbon finance, a preference for smaller scale or, in the case of imported coal, concerns about 

energy security. Table 3 presents price estimates for biomass feedstocks in the United States. 

 

Table 3. Biomass feedstock prices and characteristics in the United States (Source: IRENA, 

2012 based on EPA, 2007). 

 Typical 

moisture 

content 

Heat value 

MJ / kg 

(LHV) 

Price 

(USD / GJ) 

Price 

(USD / tonne) 
Cost structure 

Forest residues 30% – 40% 11.5 1.30 – 2.61 15 – 30 

Collecting, harvesting, 

chipping, loading, 

transportation and 

unloading. Stumpage 

fee and return for profit 

and risk. 

Wood waste
1
 5% – 15% 19.9 0.50 – 2.51 10 – 50 

Cost can vary from 

zero, where there 

would otherwise be 

disposal costs, to quite 

high, where there is an 

established market for 

their use in the region. 

Agricultural residues
2
 20% – 35% 11.35 – 11.55 1.73 – 4.33 20 – 50 

Collecting, premium 

paid to farmers, 

transportation. 

Energy crops
3
 10% – 30% 14.25 – 18.25 4.51 – 6.94 39 – 60 Not disclosed. 

Landfill gas - 18.6 – 29.8
4
 0.94 – 2.84 0.017 – 0.051

4
 

Gas collection and 

flare. 
1 Sawmills, pulp and paper companies (bark, chip, sander dust, sawdust). Moisture content is often low because 

they have already been through a manufacturing process. In cases where disposal is required, prices can be zero 

as the avoided costs of disposal can make it worthwhile to find a productive use for the feedstock. 
2 Corn stover and straw. 
3
 Poplar, willow and switchgrass. disadvantages of energy crops are higher overall cost than many fossil fuels, 

higher-value alternative land uses that further drive up costs. 
4 For landfill gas the heat value and price is in MJ/m

3
 USD/m

3
. 
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Figure 3. Renewable power generation costs indicators and boundaries. (Source: IRENA, 

2012 based on US DOE, 2011) 

 

In Europe, an analysis of four biomass sources and supply chains, made by the European 

Climate Foundation in 2010, identified feedstock costs in between 4.7 € and 7.4 €/GJ for 

European sourced wood chips. Local agricultural residues were estimated to cost 4.3 € to 5.4 

€/GJ. Imported pellets from North America are competitive with European wood chips if they 

are transported from Scandinavia to continental Europe. These are representative examples, 

and there will be significant variation in actual feedstock costs, depending on the actual 

project details. 

 

Table 4. Biomass feedstock costs including transport for use in Europe. (Source: European 

Climate Foundation, 2010) 

 
Feedstock Transport Total costs 

€/GJ €/tonne €/GJ €/tonne €/GJ €/tonne 

Woodchips from local energy 

crops 
4.7 – 7.4 54 – 85 - - 4.7 – 7.4 54 – 85 

Woodchips from 

Scandinavian forest residues 

to continental Europe 

5.1 – 6.1 58 – 70 2.7 – 3.1 30 – 34 7.7 – 9.1 89 – 104 

Local agricultural residues 4.3 – 5.4 50 – 61 - - 4.3 – 5.4 50 – 61 

Imported 

pellets (from 

U.S. to 

continental 

Europe) 

Feedstock 2.7 – 3.3 45 – 57 - - 2.7 – 3.3 45 – 57 

Pelletizing 2.7 – 3.1 45 – 50 - - 2.7 – 3.1 45 – 50  

Total 5.4 – 6.4 90 – 109  3.1 – 3.4 50 – 57  8.4 – 9.7 141 – 164 
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Figure 4. The LCOE framework for biomass power generation. (Source: IRENA, 2012) 

 

Figure 4 presents the impact of the high and low ranges for the feedstock costs on their share 

of the LCOE of different biomass technologies. Excluding co-firing, which is a special case, 

feedstock costs typically account for 20% to 50% of the LCOE of power generation. The 

range is significantly wider for gasifier-based CHP projects, where the feedstock cost can 

account for as little as 14% of the LCOE but up to 85% in the case of using imported wood 

chips. 

 

During the early springs of 2010 and 2011 respectively, prices of different assortments of 

wood fuels in the countries participating in EUBIONET III
1
 were collected from the 

respective partners in two rounds. The instructions for the partners in the first round stated 

that ideally, time series of prices stretching from the second half of 2006 – the time of the last 

price collections of the EUBIONET II project – to early 2010, and in the second round for the 

year 2010 were to be collected.  

 

Figures 5-9 show the prices of different raw materials between 2006-2011 (in case of Figure 

5, between 2006-2010) in the European countries. In order to make comparison, the prices on 

the industrial market and on the residential market both are displayed. 

 

 
Figure 5. Wood pellets (industrial market), €/GJ. (Source: Vinterbäck – Porsö 2011) 

 

                                                           
1
 For more information visit http://www.eubionet.net/  

http://www.eubionet.net/
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Figure 6. Wood briquettes (residential market), €/GJ. (Source: Vinterbäck – Porsö 2011) 

 

 
Figure 7. Wood briquettes (industrial market), €/GJ. (Source: Vinterbäck – Porsö 2011) 

 

 
Figure 8. Wood chips (residential market), €/GJ. (Source: Vinterbäck – Porsö 2011) 
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Figure 9. Wood chips (industrial market), €/GJ. (Source: Vinterbäck – Porsö 2011) 

 

Technology costs  

The cost and efficiency of biomass power generation equipment varies significantly by 

technology. Equipment costs for an individual technology type can also vary, depending on 

the region but also depending on the nature of the feedstock and how much feedstock 

preparation and handling is done onsite. Table 5 presents the equipment costs for 

representative technologies by size. 

 

Table 5. Estimated costs for biomass power generation technologies by study (2010, costs in 

USD
2
/kW). (Source: IRENA, 2012) 

 
O‘Connor, 2011 

Mott MacDonald, 

2011 

EPA, 2007 

and EIA, 2010 
Obernberger, 2008 

Stoker boiler 2,600 – 3,000 1,980 – 2,590 1,390 – 1,600 2,080 

Stoker CHP 2,500 – 4,000  3,320 – 5,080* 3,019 

CFB 2,600 – 3,000 1,440 1,750 – 1,960  

CFB CHP   4,260 – 15,500  

BFB  2,540 3,860  

Co-firing 100 – 600    

100% biomass 

repowering 
900 – 1,500    

MSW 5,000 – 6,000    

Fixed bed gasifier 

ICE 
 4,150 1,730 4,321 – 5,074 

Fixed bed gasifier 

GT 
3,000 – 3,500    

Fluidised gasifier 

GT 
  2,470 – 4,610  

BIGCC 3,500 – 4,300  2,200 – 7,894   

Digester ICE 1,650 – 1,850 2,840 – 3,665   

Digester GT 1,850 – 2,300    

Landfill gas ICE 1,350 – 1,500  1,804  

Note: * = CHP back pressure steam turbine. ICE = internal combustion engine. GT = gas turbine. MSW = 

municipal solid waste. 

 

                                                           
2
 The conversion rate in 2010 from USD to EUR was 0.785. 
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Costs of a biomass combustion plant 

Concerning the fact that biomass combustion can be the most widely used technology, a more 

detailed economic analysis of biomass combustion plants is covered in this section. Biomass 

combustion plants are complex systems with numerous components. In order to ensure a 

sustainable and economic operation of such plants, professional dimensioning and 

engineering are essential. 

 

 
Figure 10. The process of engineering. (Source: van Loo – Koppejan, 2008) 

 

In Austria, which is one of the leading countries regarding biomass-based energy production 

(see Chapter 4), technical and economic standards have been defined for biomass district 

heating plants in order to secure an economically reasonable investment. Keeping to these 

standards is a requirement for new biomass district heating or CHP projects in Austria; 

otherwise, no investment subsidies are granted. So, it can be useful to apply these standards in 

any other country. Some of the main parameters and calculations defined in the standards are: 

 

𝑆𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 [%] =
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘 ℎ𝑒𝑎𝑡 𝑙𝑜𝑎𝑑 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 ℎ𝑒𝑎𝑡 𝑤𝑜𝑟𝑘

∑ 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠
 

 

𝐵𝑜𝑖𝑙𝑒𝑟 𝑓𝑢𝑙𝑙 𝑙𝑜𝑎𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 [ℎ 𝑎⁄ ] =  
𝑏𝑜𝑖𝑙𝑒𝑟 ℎ𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟

𝑏𝑜𝑖𝑙𝑒𝑟 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
   

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝑝𝑙𝑎𝑛𝑡 [%]

=  
𝑏𝑜𝑖𝑙𝑒𝑟 ℎ𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟

𝑓𝑢𝑒𝑙 ℎ𝑒𝑎𝑡 𝑖𝑛𝑝𝑢𝑡 (𝑁𝐶𝑉)𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
× 100% 

 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒[𝑘𝑊ℎ 𝑚⁄ ] =  
ℎ𝑒𝑎𝑡 𝑠𝑜𝑙𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 [𝑘𝑊ℎ]

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 [𝑚]
 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 [%]

=
ℎ𝑒𝑎𝑡 𝑠𝑜𝑙𝑑 𝑡𝑜 𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟

ℎ𝑒𝑎𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
× 100% 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (𝑏𝑜𝑖𝑙𝑒𝑟)[𝐸𝑢𝑟𝑜 𝑘𝑊⁄ ]

=  
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 [𝐸𝑢𝑟𝑜]

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑏𝑜𝑖𝑙𝑒𝑟 [𝑘𝑊]
 

 

1. identification 
of the bases of 

the plant 

2.  feasibility 
study 

3. planning of the 
design  

4. approval 
procedure 

5. planning of the 
execution 

6. initializing and 
placing orders 

7. supervision of 
the construction 

work 

8. commissioning 
test and 

documentation 
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𝐻𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 [𝐸𝑢𝑟𝑜 𝑀𝑊ℎ⁄ ]

=
(𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 + 𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠)𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 [𝐸𝑢𝑟𝑜]

ℎ𝑒𝑎𝑡 𝑠𝑜𝑙𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟[𝑀𝑊ℎ]
 

 

The nominal thermal capacity of a biomass district heating or heat-controlled CHP plant is 

determined by the energy demand (heat, electricity) and has to allow for future developments. 

Therefore, as a first step, a detailed and precise survey of capacity and heat requirements in 

the supply area is necessary. Moreover, the simultaneity of heat demand of the district heating 

clients, described by the simultaneity factor, has to be taken into consideration. This factor 

depends on the number and type of consumers and fluctuates between 0.5 (large district 

heating networks) and 1 (micro-networks). 

 

In most cases, the energy demand is not constant over the year. In fact, the heat load in district 

heating networks especially varies during the year, reaching a maximum in winter and a 

minimum in summer. Therefore, on the basis of the results of the survey of capacity and heat 

requirements, the annual heat output line has to be calculated. In boiler planning, a distinction 

must be done between base load and peak load for economic reasons. Base load is covered by 

one or more biomass boilers, while peak load boilers are usually run for economic reasons on 

fossil energy or liquid biofuels. The installation of heat accumulators can also contribute to 

peak load coverage. This distinction between base load and peak load is necessary to achieve 

a high number of full-load operating hours of the biomass boiler and to decrease the total heat 

generation costs. The correct determination of the boiler sizes depends on the capital costs of 

the combustion unit as well as on the operating costs. 

 

Table 6. Comparison of specific investment and fuel costs for biomass and fuel oil-fired 

combustion systems. (Source: van Loo – Koppejan, 2008) 

Combustion system Specific investment costs Fuel costs 

Biomass high (about € 160/kW)
1
 

low (about € 15–25/ 

MWhNCV) 

Fuel oil low (about € 20/kW)
2
 

high (about € 55–65/ 

MWhNCV) 
1
 5 MWth biomass combustion unit (fuel feeding, furnace, boiler, multicyclone, ESP, stack) 

2
 5MWth fuel oil boiler with oil tank, burner and stack; specific investment costs related to nominal boiler 

capacity 

 

The annual utilization rate of the biomass system (biomass boiler + heat recovery) in the 

overall plant should be at least 85 per cent. Therefore, the installation of a heat recovery 

system (e.g. economizer or flue gas condensation unit) is recommended.  

 

For biomass CHP plants, mainly heat-controlled operation is recommended. The annual 

utilization rate should be at least 75 per cent. Therefore, biomass CHP applications should 

only be realized on sites where the heat produced can be utilized in a reasonable way. This 

guideline is also valid for co-firing plants. 

 

The fuel storage unit should be small and should be designed for just-in-time operation 

(capacity of the biomass storage unit less than 10 per cent of annual fuel consumption). Care 

should be taken to arrange for appropriate fuel supply contracts, organized fuel purchase and 

regional coordination. If appropriate long-term fuel supply contracts cannot be established, 

the fuel storage should be designed for a higher storage capacity, depending on the regional 

framework conditions. 
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The costs of the buildings should be less than € 150 per m
3
 converted space; the costs of the 

storage unit should be less than € 80 per m
3
 of converted space. 

 

The costs of the heat distribution network account for 35–55 per cent of the total investment 

costs of complete district heating plants. Thus, it is important to calculate the network 

correctly in order to achieve high rates of utilization and to concentrate on a small and 

efficient network of pipes. For biomass district heating networks, the network heat utilization 

rate should exceed 800 kWh/m; the targeted value is 1200 kWh/m. Moreover, a maximum 

temperature spread between feed and return should be achieved. The targeted value for 

biomass district heating plants is 40°C or higher. The annual utilization rate of district heating 

networks should exceed 75 per cent. 

 

Regarding heat generation, four types of costs can be distinguished: 

1. capital costs (depreciation, interest costs), 

2. consumption-based costs (fuel, materials like lubricants) 

3. operation-based costs (personnel costs, costs for maintenance) 

4. other costs (administration, insurance) 

 

In comparison to energy systems run on fossil fuels, investment costs for biomass boilers 

including fuel supply systems and flue gas cleaning are high. Typical values for total 

investment costs for biomass combustion plants in Austria and Denmark are shown in Figure 

11. Therefore, optimal plant utilization is necessary to decrease heat generation costs. Figure 

12 illustrates the influence of the boiler full-load operating hours on the capital costs of 

biomass combustion units. In order to take advantage of the decline of marginal unit costs, the 

boiler full-load operating hours of the biomass combustion unit should exceed 4000 hours per 

year. For biomass CHP plants in heat-controlled operation, the target is 5000 boiler full-load 

operating hours or more. 

 

It should be noted that the principles stated in this section are not only valid for small and 

medium-scale biomass heating and CHP plants, but also for large biomass CHP and co-firing 

units. However, with increasing plant size the importance of the investment costs decreases 

(the economy-of-scale effect already indicated in Figure 11 continues for larger plant sizes) 

and the relevance of the fuel costs on the energy generation costs increases. 

 

 
Figure 11. Specific investment costs for biomass combustion plants in Austria and 

Denmark as a function of biomass boiler size. (Source: van Loo – Koppejan, 2008) 
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Figure 12. Specific capital costs for biomass combustion systems as a function of boiler 

capacity and boiler utilization. (Source: van Loo – Koppejan, 2008) 

 

Spatial planning 

The prices of spatial planning depend on a number of factors. They vary from country to 

country, from region to region, from subject to subject. Therefore, it is almost impossible to 

give exact numbers about the prices of spatial planning in connection with the establishment 

of biomass-based plants.  

 

As stated by United Nations Economic Commission for Europe, when well established in 

government, spatial planning is an activity that can effectively pay for itself. The value of 

responsible investment in infrastructure and development far outweighs the costs of the 

planning system. Effective spatial planning integrates the decisions and activities of many 

actors that are anticipated to add value to the development process. It will help to create value 

in land and property and further protect that value and help to ensure good returns for 

investors. Coordination of investment through a territory-based strategy can direct public 

investment so as to avoid wasteful expenditure. Spatial planning should help to reduce 

environmental costs and other externalities such as traffic congestion. In some countries, 

spatial planning is seen as an important contributor to the health and well-being of citizens, 

thus reducing costs in other sectors. Above all, in the long term, effective spatial planning will 

reduce the costs of uncoordinated, environmentally damaging and fragmented development 

patterns, by adding value through the synergy of investment. 

 

An effective spatial planning system can help provide necessary infrastructure through impact 

fees and agreements made with developers. It may also help to provide additional community 

facilities and other services through recouping part of the development value of land and 

property. More directly, the costs of the administration of spatial planning can be offset by 

charging fees to those who seek approval for development. Many countries already have such 

fee systems in place. The information collected in the spatial planning process will be of value 

to the development industry. Some information will be made freely available through plan-

making and regulation process, but it is commonplace for planning authorities to charge for 

the provision of special information. For example, this might include more detailed 

assessments of the economic performance of land and property. In some cases, planning 

authorities charge for the provision of their planning documents, though this is usually only to 

cover administrative costs. Relevant summary information should always be readily available 

to the community. 
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Since many biomass-related projects are implemented with the support of the financial funds 

and sources of the European Union, a possible approach can be, if one makes calculations 

with the financial limit values and rates defined by the various tenders
3
. 

 

Table 7. The scope and rate of eligible expenditures in the previous and the current 

programming period. 

Cost type 
Rate (%) 

2007-2013 2014-2020 

Direct costs 10.5 – 22% 7% 

Purchasing property (land, buildings, etc.) 10% 2% 

Site preparation 0 – 6% 2% 

Project preparation, planning (environmental impact 

assessment, sustainability study, feasibility study, 

construction and engineering business plans) 

0.5 – 6% 5% 

Indirect costs 6 – 23.5% 5.5% 

Project management 2 – 12% 2.5% 

Conducting public procurement procedures 1 – 1.5% 1% 

Technical inspection services 2 – 7% 1% 

Audit 0.5 – 1% 0.5% 

Information and publicity 0.5 – 2% 0.5% 

Total 16.5 – 45.5% 12.5% 
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MODULE 3: BIOMASS 

 

CHAPTER 2. Economic aspects. 

 

Subchapter 2.2.: Other costs (employment, management, maintenance, etc.). 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: The subchapter suggests the fixed and variable operating and maintenance costs 

for biomass power and estimates the employments costs by position and country. 

 

Operation and maintenance 

As it was introduced in the previous modules, operation and maintenance (O&M) refer to the 

fixed and variable costs associated, in this case, with the operation of biomass-fired power 

generation plants. Fixed O&M costs can be expressed as a percentage of capital costs. For 

biomass power plants, they typically range from 1% to 6% of the initial CAPEX
1
 per year 

(Table 1).  

 

Table 1. Fixed and variable operating and maintenance costs
2
 for biomass power. (Source: 

IRENA 2012) 

Technology 
Fixed O&M (% of installed 

cost) 
Variable O&M (€ / MWh) 

Stokers / BFB / CFC boilers 3 – 6  3.4 – 4.2 

Gasifier 3 – 6  3.3 

AD systems 2.1 – 7  4.2 

LFG 11 – 20  n.a. 

 

Fixed O&M costs consist of labour, scheduled maintenance, routine component/equipment 

replacement (for boilers, gasifiers, feedstock handling equipment, etc.), insurance, etc. The 

                                                           
1
 Capital expenditure (CAPEX or CapEx) are funds used by a company to acquire or upgrade physical assets 

such as property, industrial buildings or equipment. It is often used to undertake new projects or investments by 

the firm. This type of outlay is also made by companies to maintain or increase the scope of their operations. 

These expenditures can include everything from repairing a roof to building, to purchasing a piece of an 

equipment, or building a brand new factory. 
2
 Operating costs are expenses associated with the maintenance and administration of a business on a day-to-

day basis. The operating cost is a component of operating income and is usually reflected on a company’s 

income statement. While operating costs generally do not include capital outlays, they can include many 

components of operating a business. 

Fixed costs can help in achieving economies of scale, as when many of a company’s costs are fixed the 

company can make more profit per unit as it produces more units. In this system, fixed costs are spread out over 

the number of units produced, making production more efficient as production increases by reducing the average 

per-unit cost of production. Economies of scale can allow large companies to sell the same goods as smaller 

companies for lower prices. 

Variable costs, like the name implies, are comprised of costs that may vary. Unlike fixed costs, variable costs 

will increase as production increases and decrease as production decreases. Examples of variable costs include 

raw material costs, payroll and the cost of electricity and other utilities. 
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larger the plant, the lower the specific (per kW) fixed O&M costs, because of the impact of 

economies of scale, particularly for the labour required.  

Variable O&M costs depend on the output of the system and are usually expressed as a value 

per unit of output (€/kWh). They include non-biomass fuels costs, ash disposal, unplanned 

maintenance, equipment replacement and incremental servicing costs. The data available will 

often combine fixed and variable O&M costs into one number so a breakdown between fixed 

and variable O&M costs is often not available. 

 

Fixed O&M costs range from 2% of installed costs per year to 7% for most biomass 

technologies, with variable O&M costs of around 0.004 €/kWh. Landfill gas systems have 

much higher fixed O&M costs, which can be between 10% and 20% of the initial capital costs 

per year. 

 

Care should be taken in comparing the O&M costs of gasifiers with other bioenergy power 

generation technologies since gasifiers have less commercial experience and are not as mature 

as the other solutions. 

 

Operations and maintenance (O&M) costs can make a significant contribution to the levelized 

cost of electricity (LCOE) and typically account for between 9% and 20% of the LCOE for 

biomass power plants. It can be lower than this in the case co-firing and in greater plants with 

extensive fuel preparation, handling and conversion needs.  

 

Employment 

Employment costs of biomass-based power plants depend on the technology (complexity), the 

size/performance of the plant (number of employees needed), and also on the given country.  

 

First, the personnel needs of the power plant have to be defined. In case of a woody biomass-

based electrical power plant, the personnel needs change according to Table 2. 

 

Table 2. Personnel needs of a power plant by the performance. (Source: Missouri Department 

of Natural Resources, 2012)  

Personnel needs 4 MW 8 MW 15 MW 20 MW 

Woody Biomass Skill Trades (estimated) 

Feller (4 man crew per 2 MW) 8 16 30 40 

Skid Operators 3 6 10 12 

Chipper Operators 3 6 10 12 

Loader Operators 3 6 10 12 

Truck Drivers 3 6 10 12 

Supervisor/Forester 2 2 2 4 

Management 3 4 4 4 

Accounting/Finance 2 2 2 2 

Electrical Power Plant Trades 

Boiler Operators 8 8 8 8 

Electricians 4 4 4 4 

Labourers 4 4 4 4 

Equipment Operators 6 6 6 6 

Supervisors 4 4 4 4 

Management  2 2 2 2 

Accounting/Finance 2 2 2 2 
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Total Personnel 57 78 108 128 

 

Table 3. Some examples of salaries per month in the sector. (Source: Collected by the author 

based on open positions) 

Position Country in local currency in € 

Biomass Commissioning 

& Service Engineer 
United Kingdom £ 2,700 – 3,000 € 3,500 – 3,900 

Engineering Operations 

Manager 
United Kingdom £ 3,800 – 4,200 € 4,950 – 5,450 

Electrical Maintenance 

Technician 
United Kingdom £ 2,000 – 2,300 € 2,600 – 3,000 

Senior Sustainability 

Consultant 
United Kingdom £ 2,500 – 3,300 € 3,250 – 4,300 

Biomass Field Service 

Engineer 
United Kingdom £ 2,300 – 3,000 € 3,000– 3,900 

Biomass Engineer - 

Renewables 
United Kingdom £ 2,500 – 2,800 € 3,250 – 3,650 

CHP Engineer United Kingdom £ 2,700 – 3,000 € 3,500 – 3,900 

Heating Engineer 

Renewable energy 
United Kingdom £ 2,100 – 2,500 € 2,700 – 3,250 

Anaerobic Digestion 

Process Specialist 
United Kingdom £ 2,500 – 3,300 € 3,250 – 4,300 

Biomass Plant Technician United States $ 3,100 – 6,000 € 4,000 – 7,800 

 

Table 4. Average salaries in the European Union. (Source: 

https://www.reinisfischer.com/average-salary-european-union-2015) 

https://www.reinisfischer.com/average-salary-european-union-2015
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It is also important to consider the salaries of the personnel employed in the biomass power 

plants, since a number of positions requiring high qualified people with special skills. But the 

location of the power plant matters, too. Despite the fact the EU promotes a deeper economic 

integration, the salary levels of the member states are different. For the sake of estimating the 

personnel costs, Table 3 and Table 4 provide a brief overview. Table 3 suggests some 

examples of salaries per month in the sector, while Table 4 shows the average salaries in the 

European Union. 
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MODULE 3: BIOMASS 

 

CHAPTER 2. Economic aspects. 

 

Subchapter 2.3.: Analysis of economic efficiency and profitability. 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: The subchapter points out the main factors of decision making and the affecting 

agents. Moreover, it presents more practical indexes for measuring the investments. 

 

Introduction 

In order to convince the potential investors (such as managers, directors, companies or 

governmental organizations), a full-detailed analysis needs to be performed to support the 

decision-making mechanisms. Investment decision is a determination made by directors 

and/or management as to how, when, where and how much capital will be spent on 

investment opportunities. The decision often follows research to determine costs and returns 

for each option. By proving the economic efficiency and profitability of e.g. a biomass-based 

power plant, they may decide to invest money in green energy. 

Main factors during decision making 

 Time horizon: approximately 25-30 years 

 Return on investment in the energy sector: more than 10 years 

 The amount of money required to be invested: 3-4 M€ for a biomass power plant (1 

MW) 

 Opportunities and risks: the environment of the implementation is determined by the 

international and the EU policies and by the energy policy of a given country. 

Therefore, it is stable due to the (specific) laws and regulations. 

 

Practical indexes to measure the investments 

As it was already introduced in the previous modules, there is a list of financial indexes or 

parameters typically used to define the economic viability of an industrial installation 

investment. Although some of them have been already defined, the main indexes used to 

analyse the viability of biomass installations are: 

 ROI (Return On Investment): A performance measure used to evaluate the efficiency 

of an investment or to compare the efficiency of a number of different investments. 

ROI measures the amount of return on an investment relative to the investment’s cost. 

To calculate ROI, the benefit (or return) of an investment is divided by the cost of the 

investment, and the result is expressed as a percentage or a ratio. 

 

The return on investment formula: 

𝑅𝑂𝐼 =
(𝐺𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡)

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
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In the above formula, ‘Gain from Investment’ refers to the proceeds obtained from the 

sale of the investment of interest. Because ROI is measured as a percentage, it can be 

easily compared with returns from other investments, allowing one to measure a 

variety of types of investments against one another.  

 ROA (Return on Assets): An indicator of how profitable a company is relative to its 

total assets. ROA gives an idea on how efficient management is a company at using its 

assets to generate earnings. Calculated by dividing a company's annual earnings by its 

total assets, ROA is displayed as a percentage. Sometimes this indx is referred to as 

‘return on investment’, but one should keep in mind that is not the same as ROI since 

the calculation method is similar, but different! 

 

The formula for return on assets is: 

𝑅𝑂𝐴 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 

 ROCE (Return On Capital Employed): Return on Capital Employed (ROCE) is a 

financial ratio that measures a company's profitability and the efficiency with which 

its capital is employed. ROCE is calculated as: 

𝑅𝑂𝐶𝐸 =
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑎𝑛𝑑 𝑇𝑎𝑥 (𝐸𝐵𝐼𝑇)

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑
 

‘Capital Employed’ as shown in the denominator is the sum of shareholders' equity 

and debt liabilities; it can be simplified as (Total Assets – Current Liabilities). Instead 

of using capital employed at an arbitrary point in time, analysts and investors often 

calculate ROCE based on ‘Average Capital Employed,’ which takes the average of 

opening and closing capital employed for the time period. 

 

A higher ROCE indicates more efficient use of capital. ROCE should be higher than 

the company’s capital cost; otherwise it indicates that the company is not employing 

its capital effectively and is not generating shareholder value. 

 EVA (Economic Value Added): A measure of a company's financial performance 

based on the residual wealth calculated by deducting cost of capital from its operating 

profit (adjusted for taxes on a cash basis). Also referred to as ‘economic profit’. 

 

The formula for calculating EVA is as follows: 

 

𝐸𝑉𝐴 =  𝑁𝑒𝑡 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑟𝑜𝑓𝑖𝑡 𝐴𝑓𝑡𝑒𝑟 𝑇𝑎𝑥𝑒𝑠 (𝑁𝑂𝑃𝐴𝑇) −  (𝐶𝑎𝑝𝑖𝑡𝑎𝑙 
×  𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑝𝑖𝑡𝑎𝑙) 

Factors affecting decision making 

 Predictability of demand: 

o Electricity and heat demand over a 30-year horizon 

o Competition in the energy market 

o ROI is over 10 years 

o CO2 quota 

o Primary legislation (e.g. treaties) 

o Secondary legislation (e.g. regulations and directives) 

o Level of losses in transmission 
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o Reactive power absorption 

 

 Predictability of procurement: 

o At the start: availability of competent professionals and power plant site 

 Site: environmental plant, settlement, development plans 

 Staff: qualified managers (construction and operation), professional 

installers 

o In the short term: a modern power plant technology is available 

 Power plant technology: supply, modernity, reliability, references, 

long-term use. 

o In the medium term: availability of permits, availability of operating staff 

 Licensing: land use, environmental protection, disaster recovery, 

construction licensing, occupancy authorization, business (operating) 

license. 

 Staff: professional operators and maintenance staff. 

o In the long term: availability of competitive fuel, availability of the power 

plant (maintenance, troubleshooting, modernity, profitability, etc.) 

 Fuel purchasing: price, storage costs. 

 

 Predictability of financial markets: 

o Interest rates 

o Bank loans and credits 

o Tender opportunities 

o Maturity date 

o Risk sharing 

o Guarantees 

o Margin 

o Repayment ability 

o Funding by own capital 

 

 Requirements for an investment: 

o Experienced engineering background: power plant, gas network, electrical 

network, construction, hydraulic engineering and proficiency in ecology. 

o Legal and economic background. 

o Experience in project management. 

o Strong financial background. 

o Duration (greatly depends on country-specific laws): 

 Site selection, land purchase: 1 to 2 years 

 Decision-preparing process, internal decision: 0.5 years 

 Permitting processes: 1 to 5 years in the OECD countries, but it is 

widely depends on national laws and regulations. In the EU, the 

average length of permitting processes (from first to last) is 2 years. 

 Construction, installation: 2 to 2.5 years. 

 

 By knowing each factor one may move forward and look at other decision-affecting 

factors and start planning 

 In order to support planning, the investor and the given stakeholders should be aware 

of the general project cycle of a biomass-based investment. To support the learning, 

Figure 1 presents this project-cycle with certain supplies, demands, financial needs 

and sales opportunities. 
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Figure 1. The project-cycle of a biomass power plant-related investment. 
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MODULE 3: BIOMASS 

 

CHAPTER 3. Social and environmental aspects for rural development. 

 

Subchapter 3.1.: Assessment of environmental impact. Emissions and Life Cycle Analysis. 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: Students can learn the environmental concerns and effects regarding biomass 

utilization. The course participant can also get to know the principles and indexes to prepare a 

Life Cycle Assessment (LCA) in this context. Furthermore, they can read about the biomass-

to-energy supply chain operations and can get familiar with the social and rural development 

impacts of biomass power plants. In the final section a vision for future of biomass is 

delineated. 

 

Environmental concerns and effects - an introduction 

 

 Biodiversity: can be affected by the conversion of natural habitats (transforming a 

natural forest to a plantation monoculture, for example) and degradation (by removing 

deadwood, for example). The former poses the bigger environmental threat, though both 

can reduce the number of plants and animal species. 

 Soil quality: can deteriorate through acidification, land erosion, the release of chemicals, 

or a change in the balance of nutrients. Emissions to soil may also pollute groundwater. 

 Water habitats: can be degraded by emissions of nutrients, soil particles, acidic 

compounds, and chemicals, and by damage to the shorelines that protect them. 

 Waste: since most types of waste present an environmental problem if not reused or 

recycled, using waste for energy production is generally seen as preferable to landfills. 

Several countries have prohibited landfills and many also have strict rules covering 

emissions of harmful substances from waste incinerators, making the use of waste 

biomass for energy an attractive option. 

 Agricultural residues and energy crops: Most types of agricultural biomass carry 

comparatively low environmental risks, though much depends on the agricultural 

practices followed. Eutrophication from the over-use of fertilizers, the release of 

chemicals into soil and water, and monoculturization are all potential risks, though they 

are no different to those faced and managed in any large-scale agricultural production. 

Therefore, as long as there are sufficient safeguards and regulations and best-practice 

management guidelines, the environmental impact should be no greater than that of 

ordinary agricultural production, providing there is no change of land use. This holds true 

both for residues, which are a by-product so do not pose any additional environmental 

risks, and energy crops, which generally require less fertilizer and chemicals than food 

and feed crops. In Europe, biomass from agriculture will largely be produced 

domestically due to its low transportability, helping to ensure sound management 

practices. 
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 Forestry: The removal of some types of forest biomass (for example harvest residues or 

stumps) can reduce the level of available nutrients, cause acidification, increase soil 

erosion, and affect biodiversity, especially at high extraction rates. This is largely because 

the amount of available deadwood decreases and because the soil is disturbed. As a 

result, many countries have established regulation that limits the extent to which these 

residues and stumps can be removed from the forest. The share of residues that can be 

removed varies. Sweden is at the high end of the spectrum and allows forest owners to 

remove about 70% of the residues. The supply increase scenario described in the supply 

chapter of this module has taken the uncertainty of how much residues can be sustainably 

removed into account through assuming that only 20% of all technically available forest 

residues outside of Scandinavia is removed (half the assumed Swedish extraction rates). 

Illegal and unsustainable logging, whether for domestic use or export, often raises 

environmental concerns. If there are enough cheap supplies from other types of forestry, 

intensive or traditional, illegal logging may become less economically attractive and, 

therefore, less prevalent. 

 Plantations: The main environmental issues biomass installations raise are similar to 

those encountered in intensive farming. For example, they create a monoculture as almost 

all other plant species are suppressed, and can result in increased use of fertilizers and 

chemicals, erosion, and, in warm and dry climates, lower groundwater levels. These risks 

need to be weighed against the carbon abatement potential of plantations. One should 

note that biomass from plantations could come as either a by-product from other 

production, e.g. of rubber or cocoa, or as the main product from dedicated ‘energy tree’ 

plantations. These two cases may differ in environmental and climate impact, not least 

depending on how production emissions are allocated between main products and 

residues when fuel production is not the main purpose of the plantation. In Europe, 

current agricultural and forestry management practices are generally regarded as 

environmentally sound. In developing countries, the issue is more complex and there are 

examples of both good and bad management practices. Larger-scale production, as well 

as the introduction of new technologies and processes, will no doubt surface new 

challenges that will need to be monitored and managed in all geographies.  

Emissions 

 

Nineteen studies, including three types of biomass-based technologies (co-combustion (CO-

COMB) with a fossil fuel, direct combustion (COMB) and gasification (IBGCC)), were 

addressed in a study made by Roberto Turconi, Alessio Boldrin and Thomas Astrup. All 

reviewed studies reported GHG emission factors, while 14 also considered NOx and SO2 

emissions. Contributions from individual life cycle phases for all three compounds were 

provided in only 8 studies. In studies assessing residual biomass, all impacts were associated 

with power plant operation, i.e., assuming a ‘zero burden’ boundary upstream of the plant (see 

the discussion regarding this aspect). Emissions related to infrastructures were negligible for 

all three compounds.  

The reported GHG emission factors showed high variability: 25–130 kg CO2-eq/MWh (CO-

COMB), 8.5–118 kg CO2-eq/MWh (COMB) and 17–117 kg CO2-eq/MWh (IBGCC). These 

data do not include biogenic CO2 emissions because it is a common LCA practice to assume a 

global warming characterization factor for biogenic CO2 of zero. However, when emission 

factors are used for GHG emission reporting within the IPCC (Intergovernmental Panel on 

Climate Change) framework, biogenic CO2 is then included because the CO2 uptake by 

biomass is accounted for within the AFOLU (i.e., Agriculture, Forestry, and Other Land Use) 
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sector. Emission factors for NOx were in the range of 0.08–1.7 kg NOx/MWh, with the 

highest values related to COMB and the lowest values associated with CO-COMB. In 

addition to the FGC (Flue gas cleaning) system, NOx emissions were strongly related to the 

type of biomass. In the provision phase, emissions occurred from the use of machinery during 

cultivation and harvesting in the case of energy crops, whereas no emissions were typically 

associated with wood residues (adopting a zero burden approach). Combustion of furniture 

wood residues may result in larger emissions due to the nitrogen content of the fuel. 

Emissions of SO2 also showed high variability for all three technologies assessed, ranging 

from 0.03 to 0.94 kg SO2/MWh, with the largest contribution from fuel provision. 

Table 1. Comparison of pollutant emissions regarding the combustion plants based on 

different energy sources in the case of medium emissions. (Source: Tóth – Bulla – Nagy, 

2011) 

 

Biomass power plant 

Coal 

power 

plant 

Natural 

gas 

power 

plant 

Block 

heating 

natural gas 

power 

plant 

Natural 

gas 

based 

central 

heating 

Foil oil 

Wood 

based 

central 

heating 

 Under 

1 

MW 

1-4 

MW 

Over 4 

MW 

      

t/TJ  

CO2 209 200 200 296 130 115 87 114 186 

kg/TJ  

Dust 146 122 49 28 0 0 0 9 273 

CO 602 394 75 28 15 111 84 111 10.022 

NOx (as NO2) 208 234 323 166 175 128 75 74 91 

TOC (Total Organic 

Carbon) 
15 8 5 3 1 11 8 18 137 

SO2 (flue gas + 

dust) 
55 52 29 180 5 4 3 89 55 

Cl (flue gas + dust) 8 8 5 25 0 0 0 0 4 

g/TJ  

F 276 265 265 1.523 0 0 0 0 273 

Benzo(a)pyrene 1.2 0.2 0.006 0.138 0.075 0.221 0.335 1.292 82 

PAC (Polycyclic 

Aromatic 

Hydrocarbon) 

69 13 0.7 no data no data no data no data no data 1.093 

Toxic equivalency 

factor (TEF)/TJ 
 

PCDD/DF 0.203 0.037 0.030 no data no data no data no data 0.006 0.364 

 

The assessment of GHG emission savings of biomass is based on the following formula, 

which was published in a European Commission report
1
: 

𝐸 = 𝑒𝑒𝑐 + 𝑒𝑙 + 𝑒𝑝 + 𝑒𝑡𝑑 + 𝑒𝑢 + 𝑒𝑠𝑐𝑎 + 𝑒𝑐𝑐𝑠 + 𝑒𝑐𝑐𝑟 

where: 

E = total emissions from the use of the fuel before energy conversion 

eec = emissions from the extraction or cultivation of raw materials 

el = annualised emissions from carbon stock changes caused by land use change 

ep = emissions from processing 

                                                           
1
 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0011:FIN:EN:PDF  

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0011:FIN:EN:PDF
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etd = emissions from transport and distribution 

eu = emissions from the fuel in use 

esca = emission savings from soil carbon accumulation via improved agricultural management 

eccs = emission savings from carbon capture and geological storage 

eccr = emission savings from carbon capture and replacement 

 

Principles of Life Cycle Assessment: 

 Life cycle perspective: LCA considers the entire life cycle of a product, from raw 

material extraction and acquisition, through energy and material production and 

manufacturing, to use and end-of-life treatment and final disposal. Through such a 

systematic overview and perspective, the shifting of a potential environmental burden 

between life cycle stages or individual processes can be identified and possibly avoided. 

 

 

 

 

 

 

 

 

 

Figure 1. Stages of LCA. 

 Environmental focus: LCA addresses the environmental aspects and impacts of a product 

system. Economic and social aspects and impacts are, typically, outside the scope of the 

LCA. Other tools may be combined with LCA for more extensive assessments. 

 Relative approach and functional unit: LCA is a relative approach, which is structured 

around a functional unit. This functional unit defines what is being studied. 

 Iterative approach: LCA is an iterative technique. The individual phases of an LCA use 

results of the other phases. The iterative approach within and between the phases 

contributes to the comprehensiveness and consistency of the study and the reported 

results. 

 Transparency: Due to the inherent complexity in LCA, transparency is an important 

guiding principle in executing LCAs, in order to ensure a proper interpretation of the 

results. 

 Comprehensiveness: LCA considers all attributes or aspects of natural environment, 

human health and resources. By considering all attributes and aspects within one study in 

a cross-media perspective, potential trade-offs can be identified and assessed. 

 Priority of scientific approach: Decisions within an LCA are preferably based on natural 

science. If this is not possible, other scientific approaches (e.g. from social and economic 

sciences) may be used or international conventions may be referred to. If neither a 

scientific basis exists nor a justification based on other scientific approaches or 

 

Direct applications: 

 Product 

development and 
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 Strategic planning 
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 Marketing 

 Other 
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Goal and 
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analysis 

Impact 
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international conventions is possible, then, as appropriate, decisions may be based on 

value choices. 

 

Indexes to prepare a Life Cycle Analysis 

1. Energy payback time 

Energy payback time (EPBT) means years to recover primary energy consumption throughout 

life cycle of a power plant by its own energy production. Both the total primary energy 

requirement and the annual power generation concerned as primary energy. Energy payback 

time (year) of a system is a ratio of Total primary energy requirement of the system 

throughout its life cycle to annual primary energy generated by a system. To convert annual 

power generation (kWh) of electricity to primary energy looked at the efficiency of power 

plants in the assumed country. 

2. CO2 payback time 

CO2 payback time (PBT) is calculated from estimates of CO2 emissions during construction 

and operation in a large scale fossil fuel combustion. For example, the definition of CO2 

payback time, for biomass versus coal fired power plant is defined as follows: 

𝐶𝑂2𝑃𝐵𝑇 =
[(𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠/𝐸𝑏𝑖𝑜𝑚𝑎𝑠𝑠) − (𝐶𝑐𝑜𝑎𝑙/𝐸𝑐𝑜𝑎𝑙)]

[(𝑂𝑐𝑜𝑎𝑙/𝐸𝑐𝑜𝑎𝑙) − (𝑂𝑏𝑖𝑜𝑚𝑎𝑠𝑠/𝐸𝑏𝑖𝑜𝑚𝑎𝑠𝑠)]
 

where: C = CO2 emissions from material production and its construction (g-CO2); O = CO2 

emissions from generating (operating) plant (g-CO2/year); E = electricity generated annually 

(kWh/year). 

3. Energy intensity 

The energy intensity for a plant of power rating (P) and load factor (λ) is defined as the ratio 

of the energy requirement (E) for construction, operation and decommissioning and the 

electricity output of the plant over its life time (T). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝐸

𝑃 × 8760 × 𝜆 × 𝑇 
 

 

Biomass-to-energy supply chain operations 

Supply Chain Management (SCM) plays a critical role in the management of bioenergy 

production processes. Biomass Supply Chain Management has been defined as the integrated 

management of bioenergy production from harvesting biomaterials to energy conversion 

facilities. Biomass energy supply chain differs from traditional supply chains in several ways. 

Among them, it is to note the seasonal availability of agricultural biomass, the low energy 

density of the biomass, the demand variations due to uncertain energy production 

performance and the variability of biomass materials, which has implications for transport and 

storage. Thus, the main objectives of the biomass supply chain management are to minimize 

costs, environmental impacts of the supply chain, and ensure continuous feedstock supply. 

The parties involved in a biomass energy supply chain are: the supplier of biomass, 

transportation and distribution entities, energy production facility developers and operators, 

the government and utility firms who provide the incentives, and the end users. In this sense, a 

typical bioenergy supply chain is comprised of five main components: harvesting and 

collection, pre-treatment, storage, transport, and energy conversion. 

 



                                                                                  

                                                                                 

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

6 

Renewable energy for local development course 

 

Figure 2. Operational components of a biomass supply chain. (Source: Mafakheri – Nasri, 

2014) 

 

Figure 3. Illustration of multi-scale modeling and optimization of biofuel supply chains
2
. 

(Source: Yue – You – Snyder, 2013) 

                                                           
2
 For the full-detailed image see http://www.sciencedirect.com/science/article/pii/S0098135413003670  

Biomass 
Harvesting 

and Collection 
Storage Transport Pre-treatment Storage Transport 

Energy 
Conversion 

http://www.sciencedirect.com/science/article/pii/S0098135413003670
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Figure 3 illustrates the multi-scale modelling and optimization of biofuel supply chains in 

order to give a general summarization in connection with the above mentioned ideas. 

1. Biomass harvesting and collection: In this component of biomass supply chains, the 

main decisions to deal with are allocation of land, harvest scheduling, and biomass 

collection planning based on the analysis of biomass soil/moisture contents, climatic 

conditions, land availability, and bioenergy demand. 

2. Biomass pre-treatment: Pre-treatment is a mechanical or chemical process (or a 

combination of them) that converts biomass into denser energy carriers not only to 

increase its energy conversion rate but also to facilitate handling, storage and 

transportation, and to reduce the associated costs. 

3. Biomass storage: Typical decisions related to storage component of biomass supply 

chains are analysis of the location of storage facilities and storage capacity 

planning/scheduling. Choosing an appropriate location for biomass storage facilities is 

not only influenced by the type and characteristics of biomass materials, but is also 

constrained by transportation options.  

4. Biomass transport: the transport phase in biomass supply chain is associated with 

various models developed in order to analyse the feasibility of the alternative routes, 

decide on the means of transport (types, their capacity and schedule), minimize supply 

chain costs and travel time, and to minimize the environmental impacts of supply 

chain activities. 

5. Biomass energy conversion: In the conversion stage, decision makers need to deal 

with decisions as varied as location analysis for conversion facilities, conversion 

technology selection, and capital and operational planning of the conversion facilities. 

 

These five stages are summarized in Figure 4. 

 

Figure 4. A taxonomy of biomass supply chain operations management models. (Source: 

Mafakheri – Nasri. 2014) 
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Challenges associated with biomass supply chain operations by Mafakheri and Nasri (2014) 

1. Technical and technological: 

 Unavailability of biomass 

 Seasonality of biomass 

 Inefficiencies of conversion facilities 

 Infeasibility of large-scale production 

 Conflicting decisions (technologies, locations, and routes) 

 Complex location analysis (source points, inventory facilities, and production 

plants) 

2. Financial: 

 High capital costs (a thirst for operational savings) 

 The limits for the economy of scale 

 Unavailability and complexity of life cycle costing data 

 Lack of infrastructural requirements 

 Inflexibility to energy demand 

 Risks associated with new technologies (insurability, performance, rate of 

return) 

 Extended market volatilities (energy and food markets) 

3. Social: 

 Lack of participatory decision making 

 Lack of public/community awareness 

 Local supply chain impacts vs. global benefits 

 Health and safety risks 

 Conflicts with food supply chain 

 Extra pressure on transport sector 

 Decreasing the aesthetics of rural areas 

4. Environmental: 

 Loss of biodiversity and natural habitats 

 Soil overexploitation and degradation 

 GHG emissions throughout the supply chain activities 

 Excessive use of water 

 Unavailability of data on environmental impacts 

5. Policy and regulatory: 

 Impact of fossil fuel tax on biomass transport 

 Lack of incentives to create competition among bioenergy producers 

 Focus on technology options and less attention to types of biomass materials 

 Lack of support for sustainable supply chain solutions 

6. Institutional and organizational: 

 Varied ownership arrangements and priorities among supply chain parties 

 Lack of supply chain standards 

 Impact of organizational norms and rules on decision making and supply chain 

coordination 

 Immaturity of change management practices in biomass supply chains 
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CHAPTER 3. Social and environmental aspects for rural development. 

 

Subchapter 3.2.: Social and Rural Development impact. 
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Summary: In addition to the characteristics of social and rural development impact of using 

biomass energy, the subchapter provides a brief summarization of the above mentioned 

factors in order to enable explicit learning and critical thinking. Additional facts related to the 

theme can be found in the remaining chapters.  
 

Social and Rural Development impact. 

Concerning the conclusions of the preceding chapters, the following features of biomass 

related to the social and rural development can be discussed in detail. While the 

environmental benefits of renewable energy, including bioenergy, are widely accepted, the 

socio-economic benefits are not so well understood. Investment in renewable energy 

technologies can usually provide benefits to the whole macro-economy by creating jobs and 

improving social welfare. From the social perspective, there can be little doubt that bioenergy 

projects protect existing employment, provide new jobs, give learning opportunities, transfer 

skills, introduce new skills, and provide training and educational opportunities. In addition, 

the trend towards distributed energy systems and independent power production using 

smaller-scale plants and embedded generation should result in a decline in urban drift, once 

rural communities are able to develop and grow using the new sources of bioenergy available 

to them. 

 

In general, renewable energy systems are more labour intensive than fossil fuel systems and a 

higher proportion of the jobs require relatively high skills. To operate and maintain bioenergy 

plants and provide the fuel, employment opportunities are often created, particularly in rural 

areas, bringing a new perspective to rural communities. Bioenergy project employment differs 

from wind, hydro and solar projects where the work activities mainly consist of plant 

manufacturing, installation and maintenance. Providing the biomass fuel supply and 

delivering it to the conversion plant is an essential additional component of bioenergy. 

Therefore, the plant construction jobs tend to represent a smaller proportion relative to the on-

going operation and maintenance jobs. This is advantageous in areas where employment is a 

major political concern, but since labour is often expensive, then it is a major reason why 

renewable energy projects often find difficulty in competing on an economic basis. 

 

Biomass can also contribute to the EU energy security, in so far as the majority of biomass 

demand is met through domestically produced raw material and imports are supplied by 

diversified sources. In the case of additionally mobilised biomass, there is also a potential for 

new sources of income along the whole biomass value chain, from cultivation to harvest, 

processing and conversion into electricity, heating and cooling. This can benefit farmers and 

forest owners and support rural development. In 2012, the European bioheat and bioelectricity 
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sectors generated a total turnover of, at least 3300 million euros, and employed over 374,800 

people. 

 

 
Figure 1. SWOT analysis on biorefineries in general. (Source: IEA, 2012) 

 

A SWOT analysis is a tool that identifies the strengths, weaknesses, opportunities and threats 

of an organization. Specifically, SWOT is a basic, straightforward model that assesses what 

an organization can and cannot do as well as its potential opportunities and threats. The 

method of SWOT analysis is to take the information from an environmental analysis and 

separate it into internal (strengths and weaknesses) and external issues (opportunities and 

threats). Once this is completed, SWOT analysis determines what may assist the firm in 

accomplishing its objectives, and what obstacles must be overcome or minimized to achieve 

desired results. Figure 1 gives an insight to strengths, weaknesses, opportunities and threats 

related to the utilization of biorefineries in general. 

References 

 

BTG biomass technology group BV (2009). Guideline for Safe and Eco-friendly Biomass 

Gasification. BTG biomass technology group BV. Retrieved 2/02/2016, from 

http://www.gasification-guide.eu/gsg_uploads/documenten/D10_Final-Guideline.pdf  

Caputo, A. C.; Palumbo, M.; Plagagge, M., & Scacchia, F. (2005). Economics of biomass 

energy utilization in combustion and gasification plants: effects of logistic variables. Biomass 

and Bioenergy, 28, 35–51. 

http://www.gasification-guide.eu/gsg_uploads/documenten/D10_Final-Guideline.pdf


                                                                                  

                                                                                

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

3 

Renewable energy for local development course 

Dahlquist, E. (ed.) (2012). Biomass as Energy Source: Resources, Systems and Applications. 

CRC Press. 

Dzikuć, M., & Łasiński, K. (2014). Technical and Economic Aspects of Biomass Co-Firing in 

Coal-Fired Boilers. International Journal of Applied Mechanics and Engineering, Volume 19, 

Issue 4, 849-855. 

European Climate Foundation (2010). Biomass for heat and power – opportunity and 

economics. European Climate Foundation. Retrieved 2/02/2016, from 

http://www.europeanclimate.org/documents/Biomass_report_-_Final.pdf 

GNESD (2011). Bioenergy: The potential for rural development and poverty alleviation. 

Global Network on Energy for Sustainable Development (GNESD). Retrieved 2/02/2016, 

from http://www.gnesd.org/-

/media/Sites/GNESD/Publication%20pdfs/Bioenergy_PotentialForDevelopment_SPM.ashx?l

a=da.  

IRENA (2012). Biomass for Power Generation. IRENA Working Paper: Renewable Energy 

Technologies: Cost Analysis Series. Retrieved 2/02/2016, from 

https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-

BIOMASS.pdf  

Jansen, R. A. (2012). Second Generation Biofuels and Biomass: Essential Guide for 

Investors, Scientists and Decision Makers. Wiley. 

Karlsson, I., & Rydén, L. (eds.) (2012). Rural Development and Land Use. The Baltic 

University Programme, Uppsala University. 

Matovic, M. D. (ed.) (2013). Biomass Now – Sustainable Growth and Use. InTech. 

National Research Council (2011). Renewable Fuel Standard: Potential Economic and 

Environmental Effects of U.S. Biofuel Policy. Committee on Economic and Environmental 

Impacts of Increasing Biofuels Production; National Research Council. 

OECD (2012). Linking Renewable Energy to Rural Development. OECD Green Growth 

Studies, OECD Publishing. 

Openshaw, K. (2010). Can Biomass Power Development? International Institute for 

Environment and Development (IIED). Retrieved 2/02/2016, from 

http://pubs.iied.org/pdfs/14598IIED.pdf  

Riva, G. et. al. (2012). Handbook on Renewable Energy Sources. ENER SUPPLY. Retrieved 

2/02/2016, from http://www.ener-supply.eu/downloads/ENER_handbook_en.pdf 

Sheelanere, P., & Kulshreshtha, S. (2013). Sustainable Biofuel Production: Opportunities for 

Rural Development. International Journal of Environment and Resource (IJER), Volume 2 

Issue 1, 1-13. 

Shekhar, N. (2010). Popularization of Biomass Briquettes - A means for Sustainable rural  

van Loo, S., & Koppejan, J. (eds.) (2008). The Handbook of Biomass Combustion and Co-

firing. Earthscan. 

http://www.europeanclimate.org/documents/Biomass_report_-_Final.pdf
http://www.gnesd.org/-/media/Sites/GNESD/Publication%20pdfs/Bioenergy_PotentialForDevelopment_SPM.ashx?la=da
http://www.gnesd.org/-/media/Sites/GNESD/Publication%20pdfs/Bioenergy_PotentialForDevelopment_SPM.ashx?la=da
http://www.gnesd.org/-/media/Sites/GNESD/Publication%20pdfs/Bioenergy_PotentialForDevelopment_SPM.ashx?la=da
https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-BIOMASS.pdf
https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-BIOMASS.pdf
http://pubs.iied.org/pdfs/14598IIED.pdf
http://www.ener-supply.eu/downloads/ENER_handbook_en.pdf


                                                                                  

                                                                                

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

4 

Renewable energy for local development course 

Wichtmann, W., & Wichmann, S. (2011). Environmental, Social and Economic Aspects of a 

Sustainable Biomass Production. Journal of Sustainable Energy & Environment Special 

Issue, 77-81. 



                                                                                  

                                                                                

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

1 

Renewable energy for local development course 

MODULE 3: BIOMASS 

 

CHAPTER 3. Social and environmental aspects for rural development. 

 

Subchapter 3.3.: Vision for future. Ideas and new suggestions for future. 

 

 

Dr. Zsolt Radics 

Geolin Co., Hungary 

 

 

Summary: This subchapter offers a brief overview on the vision for the future regarding the 

use of biomass power. The students can learn about the potentials of biomass resources, the 

development of combustion technologies and possible technologies of the future. The final 

part of this subchapter is concerned with the global expansion of biomass power combustion. 

 

Introduction
1
. 

 

This section offers a brief overview of research and development activities that are ongoing or 

planned regarding the current state-of-affairs in this field. Areas in which research and 

development are being performed are: biomass potentials, fuel pre-treatment technologies, 

combustion, CHP systems, process control and gas clean-up technologies that can cope with 

difficult-to-burn feedstock, minimize harmful emissions and increase efficiency.  

In order to achieve these aims, new and innovative calculation and simulation tools and 

measurement devices are being used. Another important target of R&D activities, apart from 

technological innovation, is the reduction of investment, maintenance and operating costs. 

However, along with the conditions that can make or break new technologies, the need for 

research and development also varies per country.  

 

Investigation around the potential of biomass resources 

The energy demand has been steadily increasing in recent years worldwide, and this trend is 

expected to continue. This development has also led to a steady rise in CO2 emissions. To 

reduce emissions, new solutions are needed. The combustion of solid biomass for heat, power 

and combined heat and power (CHP) generation is considered to offer one of the highest 

potentials for renewable energy utilization and CO2 emission reduction in the short to medium 

term. The European targets, as well as several targets at national levels, and the increasing 

utilization of solid biomass (especially woody biomass) for energy generation not only in 

Europe but also worldwide raise several questions concerning the availability of sufficient 

biomass resources and the reliability of fuel supply to meet these goals. Therefore, the 

investigation of potentials of biomass resources that are available for thermal utilization 

becomes more and more relevant. In addition, due to the rising use of solid biomass, efforts 

must be undertaken to strengthen social and environmental integration along the entire chain 

from biomass production to provision of energy services to the consumer, because the 

advantages of the thermal utilization of solid biomass fuels must always be balanced with its 

disadvantages (e.g. eventual loss of biodiversity, claims on vast areas of land, environmental 

emissions, hazards and health conditions of workers). 

 

                                                           
1
 The material is widely based on the publications of IEA Bioenergy Agreement, Task 32 ‘Biomass Combustion 

and Cofiring’, primarily on the book written by Sjaak van Loo and Jaap Koppejan (2008). 
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Development of improved combustion technologies 

The development of combustion technologies is still ongoing. The primary aims are to 

minimize the total costs of heat and/or power production and to maximize safety, ease of 

operation and efficiency. A future goal is, for instance, to increase the efficiency by higher 

steam temperatures and pressures and better materials for super heaters. Major goals include 

the development of new combustion technologies for new biomass fuels (e.g. herbaceous 

fuels, agricultural waste materials, pellet-fired tiled stoves), and the development of furnaces 

with a high flexibility regarding biomass fuel quality (multifuel combustion systems). 

  

For medium and large-scale applications, the use of special biomass fuels, such as energy 

crops, waste wood and agricultural waste materials is of increasing interest. Annually 

harvested energy crops (like Salix, miscanthus and grasses) in particular will be on the rise in 

the coming years. Due to their different chemical compositions (as compared to conventional 

wood fuels), these biomass fuels require special combustion and flue gas cleaning 

technologies. 

 

Research activities are ongoing in finding better bed materials for fluidized bed combustion 

plants and concerning changing the combustion environment with additives. The development 

and/or implementation of innovative process control systems (e.g. Fuzzy Logic, model based 

control strategies) and innovative sensors for biomass combustion technologies in order to 

improve and stabilize system operation and to further reduce personnel costs is also a key 

interest. 

 

Gaseous (especially NOx) reduction technologies 

Biomass combustion systems have reached a high technological level, with low emissions and 

a high operational performance. However, limiting values for gaseous (especially NOx) 

emissions are constantly being driven down by the authorities, which means that major R&D 

efforts will be required in the future to develop even more advanced systems. The overall 

objective for small, medium and large-scale combustion units is the reduction of gaseous 

(especially NOx) emissions. This can be done with primary measures or combinations of 

primary and secondary measures. Generally, the decreasing emission limits for NOx underline 

the necessity of further developments in this field. These reduction measures further improve 

the environmental compatibility of thermal biomass utilization, which is one of the most 

important arguments in the competition with fossil fuel combustion units. The reduction of 

NOx emissions is of great importance for small-scale combustion units, as they need simple 

and affordable solutions. Therefore, technologies well proven in medium and large-scale 

combustion units should be simplified and adapted to small-scale applications. An increased 

utilization of biomass fuels rich in N and ash, such as waste wood and energy crops, 

necessitates the development and market introduction of efficient emission reduction 

technologies. 

 

Ash and aerosol-related problems during biomass combustion including dust (fine particulate) 

reduction technologies 

Ash-related problems in biomass combustion systems form a hot topic with a high future 

R&D demand. These problems cover the areas of particulate formation, deposit formation and 

corrosion as well as the slagging behaviour of biomass ashes. They are particularly pressing in 
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the combustion of non-wood fuels, such as energy crops, straw, grasses, husks, shells or 

stones as well as waste wood – due to their high concentrations of alkali metals, S and Cl as 

well as volatile heavy metals (especially Zn and Pb) in case of waste wood. They influence 

the design and process control of furnaces and boilers as well as the optimization of dust 

precipitation units. 

 

Solid ash and soot particles, emitted from biomass combustion installations, are important 

sources of fine particulate emissions. However, the limiting values for particulate emissions 

are driven down by the authorities and therefore primary and secondary measures to reduce 

particulate emissions have to be developed and optimized. 

 

Consequently, mitigation of fine particulate emissions that result from biomass combustion 

deserves increased attention from research organizations, manufacturers of boilers and 

particle removal technologies as well as policy makers. The formation and behaviour of fly-

ashes and aerosols in biomass combustion units has therefore become an important field of 

research. Equipment manufacturers need to be encouraged to develop novel, low-cost 

combustion installations and filtration techniques that result in low particulate emissions, even 

in small-scale applications. Existing and well-proven dust precipitation technologies that are 

available for medium- and large-scale applications should be simplified and further developed 

for their application in small-scale units. 

 

Additionally, some attempts to investigate health risks caused by particulate emissions from 

biomass combustion systems have already been initiated. This research field is of major 

relevance within the market competition with fossil fuel-based systems and from a human 

toxicology point of view and will therefore gain increasing relevance in the coming years. 

However, due to the high complexity of the problems addressed, interdisciplinary research 

and a close cooperation of technical and medical sciences is needed to succeed.  

 

Another major focus of R&D activities will be on solving problems concerning deposit 

formation and corrosion in the heat exchanger sections of large-scale biomass CHP plants. To 

reduce maintenance and repair costs and to increase the availability of installations, the 

mechanisms responsible for slagging, fouling and corrosion have to be thoroughly 

investigated. Further down the road, the search for appropriate primary and secondary 

measures to prevent deposit formation and corrosion processes as well as to reduce aerosol 

emissions will also be necessary. In addition to all this, there are also some open questions 

regarding the environmentally sound utilization of biomass ashes and the development of 

appropriate treatment technologies for contaminated biomass ashes. In both directions, the 

search is on for a closed-cycle economy and the minimization of disposal costs. 

 

Innovative micro-, small- and medium-scale CHP technologies based on biomass combustion 

The demand for combined heat and power production (CHP) from biomass is an important 

new trend. Large-scale biomass CHP systems based on conventional steam turbine cycles are 

state-of-the-art. Appropriate CHP technologies for small- and medium-scale combustion 

systems are under development or market introduction, but still require comprehensive R&D 

in order to reach the demonstration stage or to get further optimized. 

 

In the last few years, several new systems such as the ORC process and the Stirling engine 

technology have emerged for small- and medium-scale CHP production (10–1000kWe) based 

on biomass combustion. The ORC technology for instance, has already been successfully 

introduced into the market segment aiming at electric capacity ranges between 200kW and 
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2000kW. However, an optimization potential exists regarding the achievement of an increased 

electrical efficiency, as well as potential concerning cost reduction by modular design. 

 

For the Stirling engine technology, which is already at the demonstration level, further R&D 

demand includes fouling and cleaning of high temperature heat exchanger areas, process 

control and seal development for high pressure systems. Moreover, some promising 

technologies for micro-scale CHP systems have been identified (e.g. thermoelectric generator, 

Stirling engine). These technologies have to be further developed in order to reach the 

demonstration level. 

 

In the field of directly or indirectly fired gas turbines utilizing atmospheric as well as 

pressurized combustion systems, R&D activities are also taking place. These CHP solutions 

are still in an early stage of development. R&D efforts will concentrate on the further 

development and optimization of the CHP technologies until they reach the demonstration 

and dissemination level. 

 

Fuel pre-treatment technologies 

There is an increasing demand for solid biomass fuels individually ‘tailored’ to needs of the 

respective application process. This is the driving force behind new upgrading methods or 

technologies that can be applied either during or immediately after field production (e.g. 

leaching by rainfall or irrigation) or in a preparatory process prior to energetic use (e.g. 

stationary leaching, use of additives, compaction). Monitoring of production or separation 

(fractionation) processes should also focus on fuel properties in order to make optimum use of 

varying or heterogeneous raw materials. Furthermore, fuel quality aspects are becoming a key 

target in plant breeding and variety/clone selection. Genetic engineering, although still highly 

controversial, may also open up new chances for yield and quality improvements of biomass 

fuels. 

 

Short rotation forestry, which has already gained a certain importance in Scandinavia, is of 

increasing interest as a possible measure for cleaning industrially degraded land from 

contaminants (bioremediation) as well as for the utilization of set-aside land. It could also 

raise the economic competitiveness of this type of biomass fuel. If it does, the thermal 

conversion process needs to be adapted in order to guarantee an ecologically competitive 

overall energy production process (ash fractionation, efficient dust precipitation). Pelletizing 

technologies for the production of upgraded biomass fuels must be improved in order to lower 

costs and enhance fuel quality (proper selection of matrices, testing and evaluation of bio-

additives for quality improvement and reduction of operating costs, development and testing 

of pre-treatment technologies for proper conditioning of the raw material). Moreover, future 

pellet production will have to cope with raw materials beyond the materials currently most 

commonly used, i.e. wood shavings and sawdust. Due to strongly increasing pellet markets in 

Europe and worldwide, the production of pellets from, e.g., woodchips, forestry residues, 

short rotation coppice and different kinds of herbaceous biomass fuels will increase in the 

future, which makes respective R&D activities necessary. Fuel-drying technologies directly 

coupled to the combustion process in order to achieve high overall energy efficiencies are also 

an interesting development. 

 

CFD modelling and simulation of thermochemical processes 
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The application of computational fluid dynamics (CFD) gives a deeper insight into flow-

related processes occurring during thermochemical conversion of solid biomass and therefore 

is a powerful tool for a quicker, less risky and more reliable development of new 

technologies. The potential of CFD modelling has increased considerably in the last few 

years. CFD modelling provides the opportunity to calculate reactive flows including species, 

temperature and residence time distributions as well as multiphase flows (flue gas as well as 

fuel and fly-ash particles) in biomass furnaces and boilers. Certain units of biomass 

conversion systems, such as furnaces, heat exchangers and dust precipitators, can be designed 

and optimized by means of CFD calculations, which are cheaper and less time-consuming 

than test runs. 

 

Furthermore, various R&D projects are ongoing in order to develop CFD models for solid 

biomass combustion in entrained flows and packed beds. This will further extend the 

applicability of this powerful tool to pulverized fuel furnaces as well as to the whole 

conversion process in spreader stoker, underfeed stoker and grate furnaces. Concerning the 

simulation of thermodynamic and chemical processes, there is an ongoing process of 

improvement of existing programme codes and databases (e.g. reaction mechanisms). 

Advanced commercial software is also being developed in the fields of chemical reaction 

kinetics (e.g. models for NOx and SOx formation) and thermodynamic equilibrium 

calculation (e.g. modelling of the behaviour of alkali metals, the formation of low melting 

compounds as well as the behaviour of heavy metals). Such models deepen our understanding 

of processes with regard to corrosion, formation of sticky deposits and ash/aerosol formation, 

thus providing the basis for the development of appropriate technological prevention 

measures.  

 

Commercially available databases contain information on the properties of almost all relevant 

elements and compounds. However, there are still blanks in the information available on 

thermodynamic and physical properties of certain elements, compounds and especially 

multicomponent/multiphase systems, which complicate the simulation of chemical reactions 

and processes at high temperatures as well as simulations for ash-forming elements and 

kinetically limited and heterogeneous reaction systems (NOx and SOx formation) in biomass 

conversion processes. Consequently, further expansion and improvement of basic data and 

models is necessary. 

 

Moreover, considerable efforts are currently being made to couple the various CFD models 

developed and to integrate reaction kinetics and equilibrium modelling into CFD simulations, 

since this approach provides a powerful opportunity for a spatially resolved simulation and 

visualization of thermochemical biomass conversion processes. CFD simulations will then not 

only be flow simulations but rather three-dimensional simulations and visualizations of highly 

complex and linked physical and chemical processes in thermal biomass conversion plants. 

This is made possible by the continuously increasing computer performance as well as special 

new simulation techniques, which allow a significant reduction of calculation time and the 

application of highly complex models as engineering tools. 

 

 

Global expansion of biomass combustion 

The largest markets for biomass combustion systems currently exist in North America and 

Europe, totalling about two-thirds of current biomass electricity production. Other important 

regions in the world are Latin America (particularly Brazil) and Asia. Europe and North 

America are expected to grow in installed capacity by an average 500 and 250MWe per year, 
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respectively, but relative growth rates will be highest in Asian and Latin American 

economies. By 2030 biomass-fuelled electricity production is projected to triple and provide 

2% of world total requirements, 4% in OECD Europe, as a result of government policies to 

promote renewables. At least up to 2015–2020, it can be expected that mainstream biomass 

power technologies will be based on direct combustion and co-combustion using steam 

cycles. As the global capacity of coal-fired power stations increases further, increased synergy 

will be found between biomass and coal-based power generation. 

 

The expected growth in biomass combustion systems will take place in dedicated biomass 

combustion systems using agricultural and process residues, as well as various biomass 

wastes. On an industrial scale, biomass combustion-based power generation using both grate 

fired and fluidized bed boilers will continue to dominate the market, as these concepts are 

already reliable and cost-effective for various fuels and are continuing to improve further. As 

the financial feasibility of steam cycle-based biomass power systems has a minimum limit of 

approximately 1MWe, there will be room for innovative but reliable CHP concepts in the 

medium term, such as organic Rankine cycle (ORC) and Stirling engines, as they are reliable, 

do not require a pressurized boiler and require little or no user involvement. 

 

For biomass fuels that are clean and brittle, direct co-firing in existing pulverized coal-fired 

power stations will remain the cheapest option for biomass power. There will also be a place 

for large-scale fluidized bed gasification systems for biomass that is less brittle and/or 

contaminated, as this technology can provide a clean gas that can be co-fired in coal-fired and 

potentially also natural gas-fired power stations. Biomass fuels containing challenging 

components (e.g. Cl) can be burned in a separate boiler, providing steam of medium 

conditions to even very advanced, ultra-supercritical power plants. 

 

By the possible introduction of the above mentioned methods and by developing the current 

ones, the expected growth of the installed capacity is shown by Figure 1. 

 
Figure 1. Expected growth in installed capacity (Source: van Loo – Koppejan, 2008) 
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1. Introduction 

This article introduces a case study of a wood pellet heated bolier to supply be used in a 

rural community house in the North Hungarian Region. As the village is situated close to the 

“Bükk National Park” its touristic function is primary. The building serves needs of local 

inhabitants and tourists as well. 

The building’s main characteristics: (Figure 1) 

 It has two stories 

 The floorspace is about 400 sq m each floor 

 The bulding is made up of: 

 One big ballroom 

 One middel size conference room 

 5 smaller “offices” 

 

Figure 1 A visualization of the Community House (Source: www.felsotarkany.hu access 1 

May 2016) 

 

2. Technical aspects of the case study 

LOCATION 

Village: Felsőtárkány (Hungary) 

Coordinates: 47° 58’ 23’’ North 

20° 25’ 01’’ East 

Elevation 200 m 

 

The local municipality is aiming to build a new-type building representing its commitment to 

green sustainable development. At the roof of the building some smaller PV units were 

http://www.felsotarkany.hu/
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settled for demonstration purposes, additionally the building is supplied with up-to-date 

insulation systems. 

Biomass fuel is a reliable alternative to fossil fuels. As compressed by-products wood pellets 

are usually locally available cost-effective fuels. This is a natural raw material as plant lignin 

holds the pellets together. These are condensed and uniformly sized pieces so it is easily 

mechanized. Another great advantage is its simplicity with no serious maintenance activities. 

Such utilities are relatively easy to plan and install. The pellet itself is cheaper and easier to 

store in small places. Through pellets clean burning of different by-products (residues and 

sawdust) can be realized. Roughly two types of pellets can be differentiated. On the one 

hand premium (ash content less than one percent) products are good for industrial utilities. 

On the other hand standard (ash content between one-two percent) pellets can be used by 

non-industrial consumers. 

Pellet is said to be the lazy men’s biomass fuel as it is comfortable to use through 

mechanized devices of feeding and automatic ash removal as well. 

In Felsőtárkány another crucial point is the availability of fuel as well. The Egererdő 

Corporation has a biomass store in 5 km. The area itself is part of the Bükk Mountain Range 

so its natural landscape can be characterized by mountains and forests. Forestry is a main 

economic branch as well. 

The villages has approximately 3500 inhabitants. It is one of the touristic centers of the 

region. Its main sub-branch is eco-tourism. (Figure 2) 

In the layout of the building a centralized hot water heat distribution system is present. 

There is enough space for the wood pellet boiler and storage silo as well. 

 

 

Figure 2 The building of the Bükk National Park in Felsőtárkány – a center of eco-tourism 

(source: www.bnpi.hu accessed 10 April 2016) 

 

http://www.bnpi.hu/
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3. Calculations and design 

 

3.1 Estimation of energy demand 

 

Firstly it is relevant to estimate the heating energy requirements of the building. (Table 1) In 

the village traditionally natural gas was the original heating fuel of residential and 

community buildings as well. Rising prices and uncertainties in natural gas supply made 

people and municipalities think about changing these systems to more available and local 

bio-fuels. Beyond covering heating demands domestic hot water needs must be fulfilled as 

well. The Community House is the venue of community meetings, parties, meeting point for 

different local clubs. At the same time sometimes big groups of tourists visit it as well. It can 

be declared as the center of local civil life. 

 

Table1 Estimated daily maximum power and energy demands of the building 

Building Ground-space 

[m2] 

Heated airspace 

[m3] 

Maximum 

demand 

[kW] 

Annual heat 

consumption 

[GJ] 

Community 

House 

800 2400 75 184 + 26 

Source: Own edition according to concerning Hungarian standards (7/2006. (V. 24.) TNM) 

Total water demand on the one hand may be determined by a national standard concerning 

the function of the building and the number of users. (MI-10-158-1:1992 Standard) In this 

case (Table 2) a Community House should be evaluated as each and every user demands 15 

litres of water. 

On the other hand domestic hot water consumption can be estimated by the following 

formula: 

Vm = 0,4 x V [m3 /d] 

where “V” is the total daily water demand of the building. 

Through this method byeond an average 1200 litres dail total water consumption about 500 

litres of domestic hot water will be needed. 
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Q (DHW) = 1,1cρV(tm - th) [Wh/day] 

Where 

c=1,16 Wh/kg is the specific heat of water, 

ρ=1kg/l is the density of water 

V is the amount of daily consumption 

th=10-15°C is the temperature of cold water, 

tm=45-60°C is the temperature of hot water 

 

According to this formula the Community House in Felsőtárkány consumes cc. 25-26 GJ a 

year to produce domestic hot water.  

 

Table 2 Domestic hot water needs of the building (per capita evaluation) 

No. of users 

(daily)1 

Hot water 
demand 
(l/cap) 

Temperature of 
cold water 
(Cº) 

Temperature of 
warm water 
(Cº) 

Warm water daily 
heat demand 
(MJ/day) 

80 15 15 47 80 

Source: The calculation was done according to the MI-10-158-1:1992 Hungarian National 

Standard 

 

According to the other Hungarian National Standard(7/2006. (V. 24.) TNM Order)9 

kWh/m2/a is the amount of energy needed for community homes. In this case 

800x9=7200kWh=26GJ in a year is the result. The results of the two estimations are similar 

so our calculations seem to be proper. 

 

 

 

 

                                                            
1 This data is a rough estimation by local staff. 
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3.2 Schematic view of the system 

 

The system compiled in the Community building should heat the whole building and produce 

domestic hot water for people using communitiy facilities there. In the centre there is a 

pellet-heated boiler, it produces heat for the radiators and hot water for plumbing units. The 

system must contain safety appliances as well: charging unit, valves, pumps, water tank, flue 

pipe, termostats and an expansion tank at the top of the system. (Figure 3) 

 

Figure 3 A schematic view of a pellet-boiler supported central heating system (Source: 

http://www.biomasscenter.org/pdfs/DOER_Pellet_Guidebook.pdf accessed 30 May 2016) 

 

In the Community House an auger-feed system is used as there is enough place in the 

boiler’s room for pellet storage. The so-called compact pellet boilers integrate in themselves 

the boiler’s body, the pellet container and the feeding auger. Alternatively boilers with 

separated storage space could be used and the two parts may be placed in separate rooms. 

(Figure 4) 

 

http://www.biomasscenter.org/pdfs/DOER_Pellet_Guidebook.pdf
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Figure 4 Two types of auger-feed plette boiler systems (Own edition after www.are-ltd.co.uk 

accessed 1 May 2016) 

 

A PELLMAX 75 kW automatic pellet boiler is installed in the building. Its efficiency – 

according to literature – can reach 89-92%. Consequently the fuel demand of the annual 

heat consumption is about 210 GJ. (Table 3) 

 

Table 3 Parameters of the boiler (PELLMAX 75) 

Pellmax(
16-300 
kW) 

Unit 75 

Heat 
exchang
er area 

m2 9 

Nominal 
heat 
output 

kW 75 

Heat 
efficienc
y 

% 89-92 

http://www.are-ltd.co.uk/
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Highest 
water 
tempera
tue 

oC 95 

Highest 
pressure 

MPa 0,2 

Chimney 
draught 

Pa 30 

Chimney 
diamete
r 

cm2 625 

Volume 
of fire 
tank 

dm3 500 

Water 
mass in 
boiler 

dm3 350 

Size of 
heated 
area 

m2 750-800 

Fuel 
type 

Primarily: DIN+, EN+ quality 
pellet. Auxiliary: max 20% 

water content wood burned 
on the supplementary grid 

Source: http://www.kazan-haz.hu/kolton-pellmax accessed 27 May 2016 

 

3.3 Chimney parameters and pellet storage room planning 

 

The MSZ 845:2010 Hungarian National Standard regulates chimney applications. For such 

units at least a 8 m high and 300 mm diameter chimney is needed its top must exceed the 

roof level with at least 400 mm. Fortunately the origional architecture of the building has 

already contained these technical parameters.  

According to literature every kW heating load needs 0,5 -0,9 m3 storage space. Because of 

security point of view the useable storage space is about 60% of the total storage space. 

Accordingly at least 35 m3 storage room (including emoty space) is needed, the usable space 

is cc. 23 m3. 

The amount of pellet stored in the room at the same load is 23 m³ x 650 kg/m³ = 14900 kg 

(15 t). The size of pellet store room is 35 m3, as the height is 3 m, the surfacfe of the room is 

10,2 m2. 

The stored energy amount is 14900 kg x 5 kWh/kg =74500 kWh or 14900 kg x 18 MJ/kg = 

268200 MJ 

http://www.kazan-haz.hu/kolton-pellmax
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As it can be seen the theoretically counted size of stored pellet is bigger than that of the 

annual consumption. Adding the fact that pellets are hygroscopic; in contact with water, 

damp walls or floors, they swell up and become useless. Damp pellets fall apart and can also 

block transport lines and damage walls. Consequently we must consider that only in dry 

places can the material be stored. As the Community House is a newly built building it can be 

a risk here. It is suggested to use a smaller storage room. The Hungarian distributor offers 

different fuel storages, the biggest one is 2,8 m3. Its capacity is able to feed the boiler for 

about one month. Another spatial factor is crucial for pellet storerooms: these have to have 

at least one external wall in order to make it easy to refill from the outside. From the figure 

we may state that the place is appropriate. (Figure 5) 

 

 

Figure 5 The place of installations in the building (GoogleEarth) 

 

 
Table 4 O&M needs of a standard pellet boiler system 

Task Frequency 

Ash removal Weekly 

Check fuel level Weekly/Monthly 

Regular user visual checks  

Check for loose moving parts 3 months 
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Lubricate moving parts 3 months 

Check exhaust system, pumps and fans 3 months 

Change cooling oil 3 months 

Check monitoring and control system 3 months 

Check chimney and flue gas ducting 3 months 

Verify and adjust the system settings, gauges 

and meters 

3 months 

Annual Maintenance by Authorised Service 

Agent 

 

Clean fuel storage bin and fuel feed system Annually 

Clean the heat exchanger & exhaust pipes Annually 

Clean bearings, fans and motors Annually 

 

Source: Carlow Kilkenny Energy Agency (www.ckea.ie accessed 1 May 2016) 

 

 

Table 5 Installation costs of the system in Felsőtárkány 

Parts Size Type Price 

Pellet boiler (auger-

feed) 

75 kW PELLMAX 75 6800 € 

Charging unit  Laddomat 21-100 400 € 

Water accumulator 3000 litres MIBEC 1800 € 

Mixing valve   200 € 

Heating pump HB 300  800 € 

Domestichot water 

pump 

  300 € 

Domestic hot water 800 litres  1500 € 

http://www.ckea.ie/
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tank 

Room termostat   200 € 

Expansion tank 30 litres  200 € 

Flue pipe   250 € 

Sensors (5 pcs)   1000 € 

Pipes and fitment   1000 € 

Chimney  LEIER LSK 1500 € 

Storage 2800 litres  900 € 

Installation costs   5000 € 

Total   21850 € 

Source: websites of producers and distributors 

 

3.4 Calculation of annual fuel consumption 

The annual heat consumption of the building (together with domestic hot water 

consumption) is 210 GJ. It must be multiplied by a factor as effectivity of the boiler is about 

90%. The final value is cc. 230 GJ. Energy content of a kg of wood pellet is approximately 18 

MJ, consequently cc. 12800 kg of wood pellet is needed to cover the consumption. The 

average market price of a kg of premium oak and beech pellet (6 mm in diameter) is about 

0,3 €. Consequently the annual fuel costs is cc. 3900 €. (Table 4 and 5) 

In case of natural gas heating 230 GJ energy could be produced from the burning of cc. 7500 

m3 gas (counting with a 90% gas boiler efficiency). In Hungary the average price of natural 

gas in 2016 for non-residential users for this amount is cc. 5000 €.  

 

4. Financial considerations 
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Table 6 Data for the pellet boiler project in Felsőtárkány with investment and operation 
costs 

Percentage of own 

funds 
10% 100% 25% 

I0 (Investment) 2185 € 21850 € 5463 € 

Mt (O&M) 300 €/year 300 €/year 300 €/year 

Ft (Fuel expenditures) 3900 €/year 3900 €/year 3900 €/year 

Et (Energy generation) 64000 kWh/year 64000 kWh/year 64000 kWh/year 

r (discount rate) 5% 5% 5% 

n (investment period) 20 years 20 years 20 years 

Source: Own edition 
 

The following Table (Table 7) is introducing the differences of the above mentioned three 
scenarios. The differences in the three Tables are the result of the variant cash-flow in year 0 
since here cash flow represents the own funds which needed to be invest. Concerning the 
fact non-refundable (government/state) subsidies are involved into the analysis, the non-
refundable part is not included where it is present.  
 

Table 7 Financial viability of the project in three scenarios 

100% own resource - Interest rate 5%; IRR = no value 

Years 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Disco

nted 

cash 

flow 

-

2

1

8

5

0 

76

1,

90

48 

72

5,

62

36 

69

1,

07

01 

65

8,

16

2 

62

6,

82

09 

59

6,

97

23 

56

8,

54

51 

54

1,

47

15 

51

5,

68

71 

49

1,

13

06 

46

7,

74

34 

44

5,

46

99 

42

4,

25

71 

40

4,

05

44 

38

4,

81

37 

36

6,

48

92 

34

9,

03

74 

33

2,

41

65 

31

6,

58

72 

30

1,

51

16 

Cumul

ated 

-

2

1

8

5

0 

-

21

08

8,

1 

-

20

36

2,

5 

-

19

67

1,

4 

-

19

01

3,

2 

-

18

38

6,

4 

-

17

78

9,

4 

-

17

22

0,

9 

-

16

67

9,

4 

-

16

16

3,

7 

-

15

67

2,

6 

-

15

20

4,

9 

-

14

75

9,

4 

-

14

33

5,

1 

-

13

93

1,

1 

-

13

54

6,

3 

-

13

17

9,

8 

-

12

83

0,

7 

-

12

49

8,

3 

-

12

18

1,

7 

-

11

88

0,

2 

25% own resource - Interest rate 5%; IRR = 8% 
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46
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05

38

4,

81

36

6,

48

34

9,

03

33

2,

41
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6,

58

30

1,

51
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In our financial calculations a permanent 800 € annual net income was calculated. In our way 

of thinking the income is coming from the difference between the costs of former natural 

gas heated system and the recent one. In case of gas and pellet prices permanent levels 

were calculated as well as in O&M. 

As we may see from the table (Table 7) in case of 100% own financial support the project will 

never be profitable. In case of 25% own resource after the eight year the project will 

produce the invested capita. In the third case (90%) of EU subsidy – the project will be 

rentabile in the fourth year. Unfortunately in case of the Hungarian Cohesion Policy it is a 

rather rare case – only non-profit organizations situated in remote and backward rural areas 

can hope such support. In case of Felsőtárkány the LEADER program supported the project 

where the support ratio was 90%. 

From the table we may see the payback periods in case of the different scenarios. Red colour 

shows years with deficit, green ones are the profitable periods. 

The IRR rate in the first case can’t be interpreted – so the investment is not viable in pure 

market conditions. In case of the two supported scenarios (with 5% interest rate) the 

projects will be succesful in financial terms. 

After analysing the Table it can be concluded that such investment are very dependent on 

the origin of the sources. Where the lack of own funds is present with other impedimental 

factors (like unemployment, aging population etc.), the state, NGOs or the EU need to help 
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the local communities and provide them the necessary intellectual and financial aids. The 

more external source is gained, the more profitable the investment will be in short term, 

therefore the settlement or the local community is going to energy efficient, sustainable in 

terms of energy consumption and self-supporting in shorter term. What beneficiaries need 

to do is to use the sources efficiently, form the view of the people on biomass and other 

sustainable energy sources and show a good example to others. 

 

5. Environmental, social and rural impact of the case study development  

 

5.1. Environmental impact 

Biomass heating is a renewable energy harvest as C02 released by burning (approximately 

4000 kg annually) has come from recent bio-ecological processes. The same amount of it 

could be consumed by living plants. In the vicinity of the village – as it is a mountain region – 

forest ecosystem is prevailing. Recently wood pellet is coming from the local forestry 

management company (Egererdő) so biofuel only travels a small distance. 

As the pellet boiler is an up-to-date model, it efficiency is very high. Additionally it burns 

pellet in a clear way so only a negligible amount of ash is produced. 

As some particles of the boiler is produced locally, the production cycle of it can be declared 

relatively short and its environmental impact is small. 

In the main environmental dimensions of biomass energy harvest we may say that 

biodiversity is not affected negatively by this project as only virign forest particles are 

processed by Egererdő. The company is responsible for sustainable forestry and state 

regulations prohibit them to cut too many trees. Their task is to prevent invasive plant from 

spreading and tehir forestry activites can help in it. Soil in the surrounding mountain is 

brwon forest soil and a planned forestry management made by Egererdő protects soil of 

high slopes from erosion. As forestry does not use chemicals soil and water habitats (Tárkány 

Stream) can be free from contamination. The developed forestry management methods of 

Egererdő help to prevent the over use of forest biomass. The needed amount of harvest 

residues or stumps are always leaved on site to make available natural nutrients for future 

tree generations. Illegal and unsustainable logging is penal according to the Hungarian Forest 

Law. 

As pellet is partly made from waste of wood industries, it can help the recycling of 

byproducts. Egererdő Corporation has a parquet plant in the vicinity its residues are used for 

pellet production as well. 
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Although nowadays pellet used in Felsőtárkány is made of wood, but in the future 

agricultural by-product may be re-used in this way as well. At the same time agricultural land 

in the village is rare – because of high relief – and it will be used mainly for food crops. 

Wood pellet utilization and responsible forest management contribute to the maintenance 

of local mild climate. Additionally heating 12 tons of wood pellet prevents us from burning 

1440 gallons of heating oil or 2000 gallons of propane, 5500 m3 natural gas, or 4,775 

kilowatt hours (kWh) of electricity. 

 

5.2. Social and rural impact 

Investment in biomass energy technologies benefits to the local macro-economy as some 

particles of the installed wood pellet boiler are produced in the local industrial park. The 

final assembly of the boiler is done in Austria, but many Hungarian workforce is used in the 

value-added chain. Felsőtárkány is a relatively prosperous village in the North Hungarian 

Region as the local value-added is higher than the average. The level of unemployment is 

lower than the national average. As the energetic-purpose harvest of biomass is a local 

tradition, many people work for forestry and related industries. Even the municipality itself 

is employing local unemployed people as social workers. Their job is to collect forestry 

byproducts in the surrounding mountains and make them fit for burning in traditional wood-

furnaces in other buildings of the municipality. Pellet utilization made local major thinking on 

developing energy plantations in the vicinity of the village. Wood particles are planned to be 

processed by a municipality company into wood pellets. In this way the local self-

government could be self-sufficient in the field of pellet-heating.  

The Community House in the village is  the centre of local civil life. It demonstrates green 

and renewable technologies for local inhabitants and for masses of tourists. With the help of 

a neighbouring university college a trainig program is working there for local people about 

renewable energy sources and energy efficiency.  

Felsőtárkány is now a beloved village by nearby city citizens (Miskolc and Eger) many middle-

class families try to swap here as public services are fully developed. These facilities work 

even cheaper than their city counterparts because of renewable energy use. We may find 

here the only PV supported electric car loader in the whole area. 

The village inhabitants are really proud of their lifestyle, local NGOs are quite famous in the 

region. Felsőtárkány in spite of its smallness has an own football team playing in an upper 

National class. 

In the micro region there is a local development NGO (ETFE). Through ETFE meetings 

surrounding villages can learn from the best practices of Felsőtárkány in the field of 

renewable energy utilization, rural development and climate protection. 
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6. Conclusions  

 

The village of Felsőtárkány is situated in the North Hungarian Region in the Bükk Mountains. 

Its Community House was built to be a representative place for local people. The building is 

an energy-efficient one and symbolizes renewable energy penetration into the Hungarian 

countryside. 

Wood pellet can be declared a local product that’s why the municipality created a wood 

pellet boiler heated central heating system in the building. We saw that because of the 

function of the House a relatively high amount of energy is used for domestic hot water 

making. We went through technical steps of heat demand estimation. Although pellet boiler 

is the heart of it, central heating system is a complex one and other particles must be 

integrated. In determinig these details, beyond professional literature different national 

architectural standards had to be utilized. For technical details and price calculations 

websites of different producers were visited. 

From the financial chapter we saw that unfortunately for rural Hungarian municipalities such 

investments are relatively hard to make because of the lack of own money. Only different EU 

supported programmes can help achieving these aims. In case of Felsőtárkány a 75% of EU 

support makes the project viable. Fortunately the LEADER program in the former period 

contained enough sources to support effectively these issues. 

This biomass project can be declared CO2 independent and at the same time helps to save 

local natural environment. 

Socially the building represents not only a sustainable construction, but a socially 

constructed focal point of a proud and environment-friendly local community. 
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1. CASE STUDY 1  

A municipality, Kengyel in 

the North Great Plain 

Region, Hungary is planning 

to replace recent heating 

system of its Mayor’s office 

building. It was 

energetically optimized 

recently (insulation, up-to-

date windows and doors, 

technical services systems). 

The building has a gas boiler 

for heating (space heating and hot water) but as gas prices rise, a cheaper fuel should be 

invented. The village has 3500 inhabitants and is located on the Great Hungarian Plain in the 

middle of a good-quality arable land zone. The main crops are wheat, barley and corn.  

 

1.1. Input data 

LOCATION 

Village: Kengyel (Hungary) 

Coordinates: 47º 05’ 31’’ North 

20º 20’ 24’’ East 

 

The building is situated in the centre of the village, although there is enough place around 

it for biomass storage. 

 

ENERGY NEEDS 

Heated area: 440 m2 

Number of levels: 1 

Heated airspace: 1280 m3 

Location: freestanding building 

Wall thickness and material: 35-45 cm, mixed brick and adobe 

Roof type: pitched without insulation 

Doors and windows: wood with one layer of glass 
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Heating type: central heating with radiators 

Annual amount of gas used: 14.000m3 

Annual cost of heating (gas): 6000 € 

Production of domestic hot water: gas 

Demand for domestic hot water: 16 persons 

1.2. Considerations for the study 

 Although local farmers use wheat and barley straw for animal husbandry, a significant 

amount of it is still available 

 The price of straw is approximately 50 €/t (market price – in case of own arable lands 

costs are 40% lower) 

 A straw bale heating furnace is preferred by the municipality 

 Permanent stoker staff is available to support the system 

 The cost of the installation shall be calculated by the student 

 For the economic analysis, a price of installation 7000 € and the cost of energy 

consumption of 0,19 €/kWh should be considered 

 2,5 kg straw is equal with 1 m3 of gas in energy content 

 Pay attention to the social and environmental consequences of the project as well 
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1. CASE STUDY 2  

In the vicinity of the village Zagyvarékas, Hungary there’s 

floodplain poplar forest owned by the municipality.  The 

local self-government wants to replace the former mixed 

fuel furnace with an automatic controlled woodchip boiler 

in the school building. A wood disintegrator is available 

locally, but a local storage is needed to be built. The village 

is in the North Great Plain Region in a backward micro-

region so EU aid is available for RES development. In 

relation with the project one roofed storage (150 m2) 

should be built. Two full-time employees can be employed 

in connection with the operation of the project. 

 

1.1. Input data 

LOCATION 

Village: Zagyvarékas 

Coordinates: 47°16N 

20°08'E 

 

ENERGY NEEDS 

The net annual energy consumption of the school building is 280000 kWh 90% of it is used 

for heating.  

The remaining 10% is for lighting and domestic hot water. It is consumed in the form of 

electricity. 

 

1.2. Considerations for the study 

 Consider the social aspects and rural development impact of the project 

 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus 

 The EU co-financed Hungarian “KEHOP” program supports the energetic 

modernization of public buildings 

 In Zagyvarékas there is a possibility to employ unemployed people by the municipality 

through a government-supported social-employment grant system 
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 Recently the poplar wood is not enough to provide supply in 100%, but in the vicinity 

of the villages there are uncultivated areas partly owned by the municipality suitable 

for energy plantations 
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1. CASE STUDY 3  

In Jászapáti, Jász-Nagykun-

Szolnok County, North Great 

Plain Region, Hungary (8500 

inhabitants) a agricultural local 

company (Jászapáti 2000 Mg. 

Zrt) has built a biogas power 

station. As the corporation’s 

main activity is animal 

husbandry it is aiming to utilize 

by-products of the livestock 

farm and organic waste coming 

from the vicinity (dairy waste, 

sewage sludge). 

The power station generates 

electricity – it is uploaded to the national grid – equal with the consumption of 2400 

households annually. Nowadays the exploit of the station is about 70%, but it is aimed to 

increase. Remaining slurry is used as organic fertilizer in close arable lands. 

 

1.1. Input data 

LOCATION 

Address: Jászapáti 0145/5 hrsz 

Town: Jászapáti 

Coordinates: 47º 30’ 49’’ North 

20º 08’ 25’’ East 

 

ENERGY NEEDS 

The power station uses 74760 t/year residuum in it 4 fermentors. 

It produces 300.000 kWh/electricity in every months through burning biogas in motors 

Heat is used only in site 
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The composition of raw material in a year: 

Pig liquid manure 30000 t 

Pig manure 2800 t 

Cow liquid manure 5000 t 

Cow manure 4000 t 

Other manure 6000 t 

Industrial organic waste 11010 t 

Tankage 6800 t 

Agricultural waste 2950 t 

Commercial waste 1200 t 

Communal waste 5000 t 

 

1.2. Considerations for the study 

 Heat utilization in the broader surrounding would make the plant more economic – the 

town center is cc. 3 km far from it 

 Public buildings are in the center of the town 

 There is an industrial park 5 km far from the biogas station – its buildings are heated 

by natural gas - totally 38059 m2 area is going to be built here 

 Plan a draft to use biogas generated hot water to supply heat demands 

 As the town is located in a EU cohesion region, there are many possibilities to get 

financial support for such projects 

 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus 
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1. CASE STUDY 4  

Egerszalók is a village 

(approximately 2000 

inhabitants) is in the middle of a 

wine-growing area in the North 

Hungarian Region. It is famous 

for its thermal spa and 

geothermal energy utilization 

although its biomass potential is 

not used. The village has many 

vineyards as often vine-branch is 

a waste. To the north deciduous 

forests can be found so forestry 

lopping is available as well. As 

tourism is the main economic 

branch of the community biomass burning is not allowed in order to avoid air pollution. A 

young engineer is experimenting with a so-called compost boiler to heat a greenhouse. A 

compost dump with a diameter of 3 m is able to heat a small building for 6 months through 

a worm.  

 

1.1. Input data 

LOCATION 

Village: Egerszalók 

Coordinates: 47º 52’ 12’’ North 

20º 19’ 26’’ East 

 

ENERGY NEEDS 

A 100 m2 family house in standard energy class should be heated by the application 

The annual energy consumption is about 8500 Kwh 

An average temperature of 20°C should be maintained in the house 

Permanently 30-35° temperature of the heating agent water is needed inside the worm 

The integration of a circulation pump is offered into the worm – it needs electricity 
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1.2. Considerations for the study 

 Raw materials for the compost (plants and animal waste) can be found in the village 

 Plant particles must be spalled in order to make them decayed 

 The compost should contain livestock and vegetable materials 

 A proper aeration is needed by the compost dump  

 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus 

 Used compost (after 5-6 months) can be utilized as natural fertilizer 
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1. CASE STUDY 5  

Halmaj is a small village 

(1800 inhabitants) in the 

North Hungarian Region. 

One of its main 

demographic 

characteristic is the high 

ratio of Roma population 

whose educational level is 

far below the average and 

unemployment is 

extremely high among 

them (50%). A project is 

aiming to involve 30 

people in bio-briquette 

production. The raw 

material should be collected from agricultural residues of local farmers and of municipality-

owned lands. There are state and EU-financed financial aid programmes to support 

disadvantageous Roma people to be self-supporting.  

 

1.1. Input data 

LOCATION 

Village: Halmaj 

Coordinates: 48º 14’ 48’’ North 

21º 00’ 07’’ East 

 

ENERGY NEEDS 

At the first stage the aim is to satisfy the fuel needs of 100 families. They are living in out-

of-date family houses without any insulation systems. The annual heating energy need of 

each is about 280000 Kwh. 

 

1.2. Considerations for the study 

 Raw material is provided by local farmers and the municipality with no cost, only 

collecting is a task. 

 Material used for briquetting needs a proper preparation. 

 Finished briquettes should be stored in a dry place. 
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 A briquette compressor can be procured from 8000 € (a capacity of 30-100 kg/h). 

 Labour requirements can be covered by the social employment of local Roma adults – 

they are totally paid by the state. 

 Energy content of briquettes should be counted according to the course syllabus. 

 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus. 
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1. CASE STUDY 6  

Hangony is a small village in North 

Hungary (Borsod-Abaúj-Zemplén 

County) with 1600 inhabitants. Because 

of the closing of coal mines in Hungary, 

old coal-fed furnaces have to be 

replaced by modern biomass-fed ones 

in buildings of public institutions. 

Biomass is available in the village 

(pruned branches from gardens) and the 

municipality located a dappled willow 

energy-plantation as well to feed her 

heating systems. As in the village a lot 

of under-educated unemployed people 

can be found, biomass harvest is an excellent way of job creation. 

The village is located in a multiply disadvantaged micro region and there are many external 

financial aid possibilities for different development purposes. (Széchenyi 2020 

Programme).  

 

1.1. Input data 

LOCATION 

Village: Hangony 

Coordinates: 48º 13’ 31’’ North 

20º 11’ 59’’ East 

 

ENERGY NEEDS 

Three public institutions should be heated by separate biomass furnaces additionally 

domestic hot water needs should be satisfied for 140 pupils and 15 teachers. 

Building Area Furnace output 

School 3000m2 600KW 

Kindergarten 450m2 75 KW 

Day-care centre with social 

kitchen 

340m2 80 KW 

 



                                                                                  

 

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views 

only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."       

3 

Renewable energy for local development course 

1.2. Considerations for the study 

 Furnaces should be fed by biomass chips – a shredder is available at the municipality. 

 5500m3 storage building is needed as well. 

 Each furnaces work separately and except the 80 KW one have to be fed manually. 

 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus. 

 The local forestry management state-owned enterprise (Egererdő Zrt.) support the 

village with junked Christmas Trees 

 The local municipality is in a hard financial situation so any cuts in expenses is 

inevitable 

 There are national and EU financial aid possibilities for small municipalities to 

modernize public buildings energetically 
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1. CASE STUDY 7 

The area of the „BÜKK MAK 

LEADER Local Action Group” is 

located in the North Hungarian 

Region. Its integrated rural 

development plan contains the vision 

of a micro-regional integrated 

electric network (MIKROVIRKA). 

According to plans each and every 

village will join the network as an 

electricity producer as a local small 

power station is going to be operated. 

One type of these micro-stations will 

be vegetable oil fed ones. Farmers 

and municipalities having proper 

land for vegetable oil production are 

able to operate such facilities. Coats of (e.g. sunflower) seeds can be used for pellet-making 

as well. The constructions consists of a special diesel engine and a generator producing 

electricity. 

 

1.1. Input data 

LOCATION 

Village: Bükkaranyos 

Coordinates: 47º 59’ 08’’ North 

20º 46’ 50’’ East 

 

ENERGY NEEDS 

A capacity of 7,5-15 kW micro power station should be established in the village 

The engine will be fed by raw vegetable oil (e.g. sunflower) 

For the installation a slow-speed engine, a chassis, a cooling-water tank, an oil tank, an AC 

synch generator, a starting module, an accumulator charger DC generator should be 

integrated  

1 kWh of electricity can be produced from 268 g of vegetable oil 
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Energy supply Consumption Size 

3kW AC 220V 1 period, 

1kW DC 12/24V 6 (with 

heater 8) kW heat output, 

80°C 

0,5-1 litres/hour Base:1,1m x 1,0m 

Height: 1,5m 

5kW AC 220V 1 period, 

welding generator 160A 

12 (with heater 15) kW 

heat output, 80°C 

1-2 litres/hour Base:1,2m x 1,0m 

Height: 1,5m 

7,5kW AC 380V 3 

periods, 1kW DC 12/24V 

12 (with heater 18) kW 

heat output, 80°C 

1-2 litres/hour Base:1,4m x 1,0m 

Height: 1,7m 

15kW AC 380V 3 

periods, 1kW DC 12/24V 

22,5 (with heater 35) kW 

heat output, 80°C 

2-4 litres/hour Base:1,5m x 1,2m 

Height: 1,8m 

 

1.2. Considerations for the study 

 A slow-speed diesel engine should be installed (a John Deer „Wankelmotor” can 

function with pure vegetable oil) 

 Through an inverter the application can be integrated to the national grid 

 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus 

 From 1 t of seed by extruding 300 kg oil and 700 kg pellet may be produced 

 Costs: price of the seed an of electricity (1 t seed – 100 kWh – 17 €) 

 System is more economical if produced heat is used locally 
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Oil can be produced locally by cold extruding, from seeds a 33% oil ratio can be produced 

A 300 HUF/€ exchange rate should be calculated 
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1. CASE STUDY 8 

Bercel is a small village (2000 

inhabitants) in the North 

Hungarian Region (Nógrád 

County). Because of high natural 

gas prices the local municipality 

uses biomass heating (woodchips) 

in four places: kindergarten, 

school, municipality bureau and 

heating centre (this latter supplies 

the local medical centre, 

pharmacy, village nursing home 

and emergency centre). 

The project was financed through an ESCO system. The whole cost was 120.000 €, while 

annual savings come to 35.000 €/year. 

A further development of the village is to produce her own biofuel. 

 

1.1. Input data 

LOCATION 

Village: Bercel 

Coordinates: 47°52'02"N 19°24'02"E 

 

ENERGY NEEDS 

A 100 kW furnace can be found in the school building 

5 furnaces (50-50 kW) are in the other buildings 

A day one 50kW furnace uses approximately 180 kg of woodchips 

 

1.2. Considerations for the study 

 The municipality wants to produce her own biofuel in the form of energy plantations 

 Calculate the needed amount of land to supply local needs 

 Offer some plants to satisfy local energy needs 

 Include the costs of buying machinery 
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 The cost of the installation shall be calculated by the student based on the ratios 

indicated in the course syllabus 

 Bercel is located in a cohesion region, so EU subsidy is available for such purposes 
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1. CASE STUDY 9 

In Nagypáli (Zala 

County, Western 

Transdanubian Region, 

Hungary – 500 

inhabitants) the local 

municipality is aiming to 

be an energy self-

supporting settlement. In 

the former years 

photovoltaic instruments 

were installed on the top 

of some municipality 

buildings in order to 

produce electricity of 

their own consumption. 

the surplus were sold to the national electricity grid. The community wants to use some 

parts of local land to produce basket willow (Salix viminalis) as well. From energy plant 

lands some woodchips will be produced. Woodchips could be used to heat public buildings 

in the village and surplus could be sold on the market 

1.1. Input data 

LOCATION 

Village: Nagypáli, Hungary  

Coordinates: 46°54'31"N 16°50'29"E 

 

ADDITIONAL INFO 

The basket willow will be planted in an area of 2 acres, totally 40.000 stools are set. 

Each specimen grows until 2,5-3 metres. 

Its heating value is approximately 20,5 MJ/kg. 

The price of a stool is about 8 cents. 

The plant can be harvested manually or by tractors – machinery is available at the settlement 

Basket willow can be produced in 2-3 and in 4-6 cutting cycles as well 

The market price of the product (in raw and wet condition) is cc. 30 €/t 

The average yield is 50-60 t/acres annually (in raw) 
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The EU agricultural policy supports this land use form with a financial grant of 670 € /acre 

 

1.2. Considerations for the study 

 Consider the benefit of this construction for rural development (concerning economic, 

social and environmental ones) 

 Consider the social impacts and the benefit of this construction for the local land owner 

 The cost of the project shall be calculated by the student based on the ratios indicated 

in the course syllabus 
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1. CASE STUDY 10 

The heating system of a 100m2 family house 

in Tiszaföldvár, North Great Plain Region, 

Hungary should be transferred from a natural 

gas-based central heating to a pellet-fed 

furnace system. The house was built in 

the 1970s, it is without modern 

insulation. The town is located in the middle 

of an agricultural region, additionally some 

forestry activities are present there as 

well. Natural gas prices are on the rise. 

The house is inhabited by elderly people 

so automatization is a relevant issue. 

 

1.1. Input data 

LOCATION 

Town: Tiszaföldvár 

Coordinates: 46º 58’ 26’’ North 

20º 15’ 14’’ East 

 

ADDITIONAL INFO 

The annual heat energy need is 10.000 kWh 

Annual cost of heating in case of natural gas furnace 670 € 

Cost of energy production in case of pellet-feeding: cc. 0,01 € /MJ 

There are enough place around the house for storage 

 

1.2. Considerations for the study 

 A 15-20 kW pellet-fed furnace should be used (net price cc.1500 €) 

 Size of spooler is about 25-50 l/kW (pending on the capacity of the furnace) 

 Price of additional component for the system is about the same as the furnace’s cost 

 Costs of installation: 350 € 

 Energy content of the fuel: 19 MJ/kg 

 Price of pellet: 0,3 €/kg 
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 The cost of the operation shall be calculated by the student based on the ratios indicated 

in the course syllabus 

 As the settlement is situated in a cohesion region, there are some EU financial support 

schemes available even for natural persons 




